最大连续子数组和(简单一维dp)

最大连续子数组和(简单一维dp)

一、题目:

给定n个整数(可能为负数)组成的序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的子段和的最大值。当所给的整数均为负数时定义子段和为0,依此定义,所求的最优值为: Max{0,a[i]+a[i+1]+…+a[j]},1<=i<=j<=n

例如,当(a[1],a[2],a[3],a[4],a[5],a[6])=(-2,11,-4,13,-5,-2)时,最大子段和为20。

-- 引用自《百度百科》

二、分析

经典的简单一维dp题目,设另一数组b,b[i]表示以a[i]为结尾的最大和。最大连续子数和sum值为b数组中最大值。又因判断a[i]时,前i-1个数无用,可将b结合进a数组达到空间最优。整理如下:

$$a[i]=max(a[i],a[i]+a[i-1])$$

$$sum=max(a[1],a[2]...,a[n])$$

三、代码

我用myeclipse编辑java程序,代码如下:

public class Main {
      public static int mainsum(int[] a,int n){
    	  int sum = 0;
    	  if(a[0] > 0)
    		  sum = a[0];
    	  for(int i = 1; i < n; i++){
    		  a[i] = Math.max( a[i], a[i] + a[i-1]);
    	      if(sum < a[i])
    	    	  sum = a[i];
    	  }
    	  return sum;
      }
}

四、覆盖测试

我选用条件组合覆盖,根据程序绘制流程图如下:

因为每个判定均为单条件判定,当考虑i时,将会有\((2×2)^n\)种可能,所以无法考虑i值。那么,只需2×2种情况即可条件组合覆盖。四种情况,一种特殊情况,测试样例及结果如下:

情况 用例 结果
a[i]<=a[i]+a[i-1]&&sum<=a[i] 1,2,3,4,5,6 21
a[i]>a[i]+a[i-1]&&sum>a[i] 1,-2,-3,-4,-5,-6 1
a[i]>a[i]+a[i-1]&&sum<=a[i] 1,-2,3,-4,5,-6 5
a[i]<=a[i]+a[i-1]&&sum>a[i] 10,-17,5,4,-7,6 10
特殊情况(全部小于0) -1,-2,-3,-4,-5,-6 0

测试代码如下:

public class MainTest {

	@Test
	public void testMainsum1() {
		int[] a = new int[]{1,2,3,4,5,6};
		int sum = new Main().mainsum(a , 6);
		assertEquals(21 , sum );
	}
	
	@Test
	public void testMainsum2() {
		int[] a = new int[]{1,-2,-3,-4,-5,-6};
		int sum = new Main().mainsum(a , 6);
		assertEquals(1 , sum );
	}
	
	@Test
	public void testMainsum3() {
		int[] a = new int[]{1,-2,3,-4,5,-6};
		int sum = new Main().mainsum(a , 6);
		assertEquals(5 , sum );
	}
	
	@Test
	public void testMainsum4() {
		int[] a = new int[]{10,-17,5,4,-7,6};
		int sum = new Main().mainsum(a , 6);
		assertEquals(10 , sum );
	}
	
	@Test
	public void testMainsum5() {
		int[] a = new int[]{-1,-2,-3,-4,-5,-6};
		int sum = new Main().mainsum(a , 6);
		assertEquals(0 , sum );
	}
}

测试结果如下:

全部代码:代码地址

posted @ 2018-04-01 14:09  BK-X  阅读(467)  评论(0编辑  收藏  举报