窗口函数查询优化案例

窗口函数常用用于分组排序运算中,方便用户实现各种分组需求。由于窗口函数需要通常需要全表扫描数据,同时还需排序聚集,消耗大量的CPU资源,执行效率较低。以下介绍一例窗口函数的优化案例。

准备例子

有这样一个功能需求。系统中存在资讯信息这样一个模块,用于发布一些和业务相关的活动动态,其中每条资讯信息都有一个所属类型(如科技类的资讯、娱乐类、军事类···)和浏览量字段。官网上需要滚动展示一些热门资讯信息列表(浏览量越大代表越热门),而且每个类别的相关资讯记录至多显示3条,换句话:“按照资讯分类分组,取每组的前3条资讯信息列表”。 表结构及初始数据如下:

Create table info(
   id numeric not null primary key ,
   title varchar(100) ,
   Viewnum numeric ,
   info_type_id numeric ,
   Code text 
);

create index info_infotypeid on info (info_type_id);

Create table info_type(
   Id numeric  not null primary key,
   Name varchar(100) 
);

--插入100个新闻分类
Insert into info_type select id, 'TYPE' || lpad(id::text, 5, '0' ) from generate_series(1, 100) id;

--插入1000000个新闻
Insert into info select id, 'TTL' || lpad(id::text, 20, '0' ) title, ceil(random()*1000000) Viewnum, ceil(random()*100) info_type_id , md5(id) code from generate_series(1, 1000000) id;

vacuum analyse info_type,info;

方法一:使用窗口函数

explain (analyse ,buffers )
with i as ( select i.*, row_number() over (partition by i.info_type_id order by i.viewnum desc) sn from info i)
select * from info_type t left join i on i.sn <= 3 and i.info_type_id = t.id;

                                                                 QUERY PLAN                                                                  
---------------------------------------------------------------------------------------------------------------------------------------------
 Hash Right Join  (cost=211867.09..245279.17 rows=333333 width=97) (actual time=4223.126..6169.377 rows=300 loops=1)
   Hash Cond: (i.info_type_id = t.id)
   Buffers: shared hit=11582 read=1753, temp read=17860 written=17901
   ->  Subquery Scan on i  (cost=211863.84..244363.84 rows=333333 width=82) (actual time=4223.080..6168.742 rows=300 loops=1)
         Filter: (i.sn <= 3)
         Rows Removed by Filter: 999700
         Buffers: shared hit=11582 read=1752, temp read=17860 written=17901
         ->  WindowAgg  (cost=211863.84..231863.84 rows=1000000 width=82) (actual time=4223.079..6080.518 rows=1000000 loops=1)
               Buffers: shared hit=11582 read=1752, temp read=17860 written=17901
               ->  Sort  (cost=211863.84..214363.84 rows=1000000 width=74) (actual time=4223.065..5224.438 rows=1000000 loops=1)
                     Sort Key: i_1.info_type_id, i_1.viewnum DESC
                     Sort Method: external merge  Disk: 84128kB
                     Buffers: shared hit=11582 read=1752, temp read=17860 written=17901
                     ->  Seq Scan on info i_1  (cost=0.00..23334.00 rows=1000000 width=74) (actual time=0.006..249.981 rows=1000000 loops=1)
                           Buffers: shared hit=11582 read=1752
   ->  Hash  (cost=2.00..2.00 rows=100 width=15) (actual time=0.037..0.037 rows=100 loops=1)
         Buckets: 1024  Batches: 1  Memory Usage: 13kB
         Buffers: shared read=1
         ->  Seq Scan on info_type t  (cost=0.00..2.00 rows=100 width=15) (actual time=0.015..0.021 rows=100 loops=1)
               Buffers: shared read=1
 Planning Time: 0.328 ms
 Execution Time: 6182.496 ms
(22 rows)

可以看到,这里消耗资源最大的是在 sort 操作上。那么,我们能否避免sort 操作了? 使用索引可以避免sort 操作。

方法二:只取第3名的记录

方法一,由于读取了大量数据块,耗时过多。本方法暂时先简化例子,功能要求只需返回每组1条记录。新的SQL特点,每个类型使用子查询通过info表的info_type_id列的索引,可以避免读取多余的数据。select list的子查询作为计算列,只能返回一个值,所以使用row (i.*)::info 先整合,然后使用 (inf).* 再分解,同时使用 offset2 limit 1获取第三名的一行记录。

explain (analyse ,buffers )
select id, name, (inf).*
from (select t.*,
             (select row (i.*)::info
              from info i
              where i.info_type_id = t.id
              order by i.viewnum desc
                  offset 2
              limit 1) inf
      from info_type t
     ) t;

                                                                       QUERY PLAN                                                                       
--------------------------------------------------------------------------------------------------------------------------------------------------------
 Seq Scan on info_type t  (cost=0.00..6708942.94 rows=100 width=361) (actual time=127.552..10513.868 rows=100 loops=1)
   Buffers: shared hit=3544406 read=3255
   SubPlan 1
     ->  Limit  (cost=13417.88..13417.88 rows=1 width=38) (actual time=21.744..21.745 rows=1 loops=100)
           Buffers: shared hit=706280 read=3252
           ->  Sort  (cost=13417.87..13442.87 rows=10000 width=38) (actual time=21.740..21.740 rows=3 loops=100)
                 Sort Key: i.viewnum DESC
                 Sort Method: top-N heapsort  Memory: 25kB
                 Buffers: shared hit=706280 read=3252
                 ->  Bitmap Heap Scan on info i  (cost=185.93..13288.63 rows=10000 width=38) (actual time=3.985..18.371 rows=10000 loops=100)
                       Recheck Cond: (info_type_id = t.id)
                       Heap Blocks: exact=706728
                       Buffers: shared hit=706280 read=3252
                       ->  Bitmap Index Scan on info_infotypeid  (cost=0.00..183.43 rows=10000 width=0) (actual time=2.615..2.615 rows=10000 loops=100)
                             Index Cond: (info_type_id = t.id)
                             Buffers: shared hit=1272 read=1532
   SubPlan 2
     ->  Limit  (cost=13417.88..13417.88 rows=1 width=38) (actual time=20.599..20.600 rows=1 loops=100)
           Buffers: shared hit=709529 read=3
           ->  Sort  (cost=13417.87..13442.87 rows=10000 width=38) (actual time=20.595..20.595 rows=3 loops=100)
                 Sort Key: i_1.viewnum DESC
                 Sort Method: top-N heapsort  Memory: 25kB
                 Buffers: shared hit=709529 read=3
                 ->  Bitmap Heap Scan on info i_1  (cost=185.93..13288.63 rows=10000 width=38) (actual time=3.640..17.373 rows=10000 loops=100)
                       Recheck Cond: (info_type_id = t.id)
                       Heap Blocks: exact=706728
                       Buffers: shared hit=709529 read=3
                       ->  Bitmap Index Scan on info_infotypeid  (cost=0.00..183.43 rows=10000 width=0) (actual time=2.291..2.291 rows=10000 loops=100)
                             Index Cond: (info_type_id = t.id)
                             Buffers: shared hit=2801 read=3
   SubPlan 3
     ->  Limit  (cost=13417.88..13417.88 rows=1 width=38) (actual time=21.284..21.285 rows=1 loops=100)
           Buffers: shared hit=709532
           ->  Sort  (cost=13417.87..13442.87 rows=10000 width=38) (actual time=21.279..21.279 rows=3 loops=100)
                 Sort Key: i_2.viewnum DESC
                 Sort Method: top-N heapsort  Memory: 25kB
                 Buffers: shared hit=709532
                 ->  Bitmap Heap Scan on info i_2  (cost=185.93..13288.63 rows=10000 width=38) (actual time=3.609..17.868 rows=10000 loops=100)
                       Recheck Cond: (info_type_id = t.id)
                       Heap Blocks: exact=706728
                       Buffers: shared hit=709532
                       ->  Bitmap Index Scan on info_infotypeid  (cost=0.00..183.43 rows=10000 width=0) (actual time=2.267..2.267 rows=10000 loops=100)
                             Index Cond: (info_type_id = t.id)
                             Buffers: shared hit=2804
   SubPlan 4
     ->  Limit  (cost=13417.88..13417.88 rows=1 width=38) (actual time=20.763..20.763 rows=1 loops=100)
           Buffers: shared hit=709532
           ->  Sort  (cost=13417.87..13442.87 rows=10000 width=38) (actual time=20.759..20.759 rows=3 loops=100)
                 Sort Key: i_3.viewnum DESC
                 Sort Method: top-N heapsort  Memory: 25kB
                 Buffers: shared hit=709532
                 ->  Bitmap Heap Scan on info i_3  (cost=185.93..13288.63 rows=10000 width=38) (actual time=3.769..17.505 rows=10000 loops=100)
                       Recheck Cond: (info_type_id = t.id)
                       Heap Blocks: exact=706728
                       Buffers: shared hit=709532
                       ->  Bitmap Index Scan on info_infotypeid  (cost=0.00..183.43 rows=10000 width=0) (actual time=2.390..2.390 rows=10000 loops=100)
                             Index Cond: (info_type_id = t.id)
                             Buffers: shared hit=2804
   SubPlan 5
     ->  Limit  (cost=13417.88..13417.88 rows=1 width=38) (actual time=20.713..20.713 rows=1 loops=100)
           Buffers: shared hit=709532
           ->  Sort  (cost=13417.87..13442.87 rows=10000 width=38) (actual time=20.709..20.709 rows=3 loops=100)
                 Sort Key: i_4.viewnum DESC
                 Sort Method: top-N heapsort  Memory: 25kB
                 Buffers: shared hit=709532
                 ->  Bitmap Heap Scan on info i_4  (cost=185.93..13288.63 rows=10000 width=38) (actual time=3.689..17.432 rows=10000 loops=100)
                       Recheck Cond: (info_type_id = t.id)
                       Heap Blocks: exact=706728
                       Buffers: shared hit=709532
                       ->  Bitmap Index Scan on info_infotypeid  (cost=0.00..183.43 rows=10000 width=0) (actual time=2.288..2.288 rows=10000 loops=100)
                             Index Cond: (info_type_id = t.id)
                             Buffers: shared hit=2804
 Planning Time: 0.729 ms
 Execution Time: 10514.326 ms
(74 rows)

方法二针对 info_type 的每一行,info 表都要根据 info_type_id 索引访问 info 表 5 次 (5个列)。 总时间消耗: 100 (行)*5(列)* 20 (每次大概20ms),大约 10000ms。

执行计划分析:根据 info_type_id 索引,需要访问的行数太多,而且还是需要排序。基于这些考虑,我们可以创建个 info_type_id + viewnum 复合索引,减少每访问的时间消耗,避免排序。

方法三:优化索引

create index info_typeview on info(info_type_id,viewnum);

                                                                        QUERY PLAN                                                                        
----------------------------------------------------------------------------------------------------------------------------------------------------------
 Seq Scan on info_type t  (cost=0.00..4627.72 rows=100 width=361) (actual time=0.255..13.391 rows=100 loops=1)
   Buffers: shared hit=2881 read=120
   SubPlan 1
     ->  Limit  (cost=6.31..9.25 rows=1 width=38) (actual time=0.041..0.041 rows=1 loops=100)
           Buffers: shared hit=480 read=120
           ->  Index Scan Backward using info_typeview on info i  (cost=0.42..29421.91 rows=10000 width=38) (actual time=0.034..0.040 rows=3 loops=100)
                 Index Cond: (info_type_id = t.id)
                 Buffers: shared hit=480 read=120
   SubPlan 2
     ->  Limit  (cost=6.31..9.25 rows=1 width=38) (actual time=0.022..0.022 rows=1 loops=100)
           Buffers: shared hit=600
           ->  Index Scan Backward using info_typeview on info i_1  (cost=0.42..29421.91 rows=10000 width=38) (actual time=0.018..0.021 rows=3 loops=100)
                 Index Cond: (info_type_id = t.id)
                 Buffers: shared hit=600
   SubPlan 3
     ->  Limit  (cost=6.31..9.25 rows=1 width=38) (actual time=0.021..0.021 rows=1 loops=100)
           Buffers: shared hit=600
           ->  Index Scan Backward using info_typeview on info i_2  (cost=0.42..29421.91 rows=10000 width=38) (actual time=0.018..0.020 rows=3 loops=100)
                 Index Cond: (info_type_id = t.id)
                 Buffers: shared hit=600
   SubPlan 4
     ->  Limit  (cost=6.31..9.25 rows=1 width=38) (actual time=0.021..0.021 rows=1 loops=100)
           Buffers: shared hit=600
           ->  Index Scan Backward using info_typeview on info i_3  (cost=0.42..29421.91 rows=10000 width=38) (actual time=0.018..0.020 rows=3 loops=100)
                 Index Cond: (info_type_id = t.id)
                 Buffers: shared hit=600
   SubPlan 5
     ->  Limit  (cost=6.31..9.25 rows=1 width=38) (actual time=0.023..0.023 rows=1 loops=100)
           Buffers: shared hit=600
           ->  Index Scan Backward using info_typeview on info i_4  (cost=0.42..29421.91 rows=10000 width=38) (actual time=0.020..0.022 rows=3 loops=100)
                 Index Cond: (info_type_id = t.id)
                 Buffers: shared hit=600
 Planning Time: 0.730 ms
 Execution Time: 13.552 ms
(34 rows)

可以看到,创建新索引后,单次的访问从 20ms 降低到 0.023ms ,将近降了 1000 倍。

存在问题:限制了返回行数,仅一行,同时info表有5个列,所以有5个subplan,其中4个是冗余的。

方法四:使用array,一次返回多行

以下再修改新的SQL,新的SQL特点,select list的子查询作为计算列,只能返回一行值,所以使用array() 先转换成数组类型,然后使用 unnest() 再分解成多行,同时使用  limit 3获取前三名的三行记录。

explain (analyse ,buffers )
select id, name, (inf).*
from (select t.id, t.name, unnest(inf) inf
      from (select t.*,
                   array(select row (i.*)::info
                         from info i
                         where i.info_type_id = t.id
                         order by i.viewnum desc
                         limit 3) inf
            from info_type t
           ) t) t;

                                                                          QUERY PLAN                                                                          
--------------------------------------------------------------------------------------------------------------------------------------------------------------
 Subquery Scan on t  (cost=0.00..942.89 rows=1000 width=361) (actual time=0.092..2.526 rows=300 loops=1)
   Buffers: shared hit=601
   ->  ProjectSet  (cost=0.00..932.89 rows=1000 width=47) (actual time=0.089..2.406 rows=300 loops=1)
         Buffers: shared hit=601
         ->  Seq Scan on info_type t_1  (cost=0.00..2.00 rows=100 width=15) (actual time=0.008..0.020 rows=100 loops=1)
               Buffers: shared hit=1
         SubPlan 1
           ->  Limit  (cost=0.42..9.25 rows=3 width=38) (actual time=0.018..0.021 rows=3 loops=100)
                 Buffers: shared hit=600
                 ->  Index Scan Backward using info_typeview on info i  (cost=0.42..29421.91 rows=10000 width=38) (actual time=0.017..0.020 rows=3 loops=100)
                       Index Cond: (info_type_id = t_1.id)
                       Buffers: shared hit=600
 Planning Time: 0.295 ms
 Execution Time: 2.639 ms
(14 rows)

方法五:使用lateral

新的SQL特点,简洁迅速,使用LATERAL子查询,允许它们引用前面的FROM项提供的列。

explain(analyze ,buffers )
select t.*, inf.*
from info_type t
         left join LATERAL (select i.*
                            from info i
                            where i.info_type_id = t.id
                            order by i.viewnum desc offset 0
                            limit 3) inf on true;

                                                                    QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------------------------------
 Nested Loop Left Join  (cost=0.42..1267.72 rows=300 width=88) (actual time=0.026..1.087 rows=264 loops=1)
   Buffers: shared hit=554
   ->  Seq Scan on info_type t  (cost=0.00..2.00 rows=100 width=15) (actual time=0.005..0.011 rows=100 loops=1)
         Buffers: shared hit=1
   ->  Limit  (cost=0.42..12.60 rows=3 width=73) (actual time=0.007..0.010 rows=2 loops=100)
         Buffers: shared hit=553
         ->  Index Scan Backward using info_typeview on info i  (cost=0.42..406.17 rows=100 width=73) (actual time=0.007..0.010 rows=2 loops=100)
               Index Cond: (info_type_id = t.id)
               Buffers: shared hit=553
 Planning Time: 0.114 ms
 Execution Time: 1.114 ms
(11 行记录)

结论

  1. 整个优化关键点是创建了 info_type_id + viewnum 复合索引,也就是窗口查询 partition by 和 order by 两部分列的复合索引。
  2. array 的应用也是关键的地方,解决了需要返回多行的问题。
  3. 多个subplan在嵌套了 array 之后,变成 1 个。
  4. 适用场景:适用于排序的队列比较长的情景,比如本例:每个info_type_id 有1万条记录,这种情况下,通过索引只需要访问3行。而如果通过窗口函数,即使使用索引,也必须全部排序后再去前3行。
posted @ 2021-11-04 14:03  KINGBASE研究院  阅读(223)  评论(0编辑  收藏  举报