【路径规划】OSQP曲线平滑 公式及代码
参考与前言
-
apollo 代码:https://github.com/ApolloAuto/apollo/tree/master/modules/planning/math/smoothing_spline
-
apollo readme:https://github.com/ApolloAuto/apollo/blob/master/docs/specs/qp_spline_path_optimizer.md
-
自我测试的代码:张聪明/OSQP_test (gitee.com)
本篇也主要基于参考二翻译而来,背景是因为 GPIR代码 里有这层做初始化,不太懂怎么干的和干啥,所以就搜索了一下,一开始一直在弄参考三使其能逐步断点debug 以让我能明了整个步骤,不过后来搜了一下看到了参考二 emm 就是我想要了解的 smooth到底是怎样编程二次规划问题的。
以下大部分翻译至参考二,其中添加了自己的思考句子(有时也可能就是问题
实际这个包的名字就:QP-Spline-Path Optimizer,基于二次规划的曲线路径优化器
方法:Quadratic programming + Spline interpolation,二次规划 + 样条差值
注意这全文都是讲的path,而不是trajectory,至于两者区别:Motion Planning 是什么 总结了下:
Path是静态的,不包括时间;Trajectory是除了路径还有其他信息可以说是时间,speed profile,这条路径上速度的变化关系
这一段是我看完了写的:emmm 看完了发现包装的太好了 以至于就算看了整个公式 对应起来都是要跳转进去的 果然是做软件一套的。但是想着用的话 这样也算是够了的。所以整体其实还是拿五次样条先生成了reference point 然后根据他们的s,l点来进行约束,cost function也已经给出
① 目标函数 Objective function
路径长度
首先路径的坐标系是以SL 也就是frenet坐标系下。其中 s 是从车辆当前位置到规划路径的长度,类似于我们会提前给定一个 我们要规划多长的距离。
样条线段
将路径拆分成 n 段。每段都用多项式表示,比如这样一个式子:
每段 i 沿着参考线的累积距离 \(d_i\) 的多项式函数公式如下:
实际代码调用时,后者的 5 也就是五次多项式的意思
OsqpSpline2dSolver osqp_spline2d_solver(t_knots, 5);
线段的优化函数
也就是一个cost 和为速度,加速度,加加速度:
但实际test.cc这个代码中只对加加速度进行了weight赋值,所以最后在计算曲率 curvature的时候 smooth后的效果明显好很多(虽然点之间看不出来啥)
mutable_kernel->Add2dThirdOrderDerivativeMatrix(0.5);
将cost函数转为QP形式
QP formulation:
下面是如何被优化函数objective function/cost function转成QP形式,首先我们 (1)式 可以转成向量相乘的形式,那么 \(f_i(s)\) 可以这样表示
\(f_i'(s)\) 求导再次表示
\(f_i'(s)^2\) 两个相乘一下:
然后就会获得这样的:
把常数项提到积分外面去:
然后给矩阵里的都积分一下从0到\(d_i\) 积分一下 就可以获得这样的:
所以现在应该发现了:如果是五次样条曲线的导数cost函数是会获得一个\(6\times6\)的矩阵
② 约束 Constraints
初始点/end点约束
init point/初始点
假设第一个点是 (\(s_0\), \(l_0\)), (\(s_0\), \(l'_0\)) and (\(s_0\), \(l''_0\)), 其中 \(l_0\) , \(l'_0\) and \(l''_0\) 是规划初始点的横向offset及其一阶导、二阶导,可以由 \(f_i(s)\), \(f'_i(s)\), and \(f_i(s)''\) 计算得知
使用这个式子,将这些约束转为QP等式约束
下面就是转换的步骤:
其中 \(i\) 是指那段拥有初始点 \(s_0\) 的分段区,应该说是最初的那段,因为后面平滑约束的时候还有 \(f_{k+1}(s_0)\)上面三个一起形成了一个等式,即最后的形式如 式(2).
end point/结束点
与上述的initial point 初始点步骤一致,结束点 \((s_e, l_e)\) 也是已知的,而且应该是和前面的约束一致的形式,所以总一总可以得出
等式约束 \(A_{eq}x = b_{eq}\) 展开为以下形式
实际代码中为:
// init point constraint
mutable_constraint->Add2dPointConstraint(0, Eigen::Vector2d(spline(a, 0), spline(b, 0)));
mutable_constraint->Add2dPointDerivativeConstraint(0, Eigen::Vector2d(spline_1st(a, 0), spline_1st(b, 0)));
// end point constraint
mutable_constraint->Add2dPointConstraint(t_end, Eigen::Vector2d(spline(a, t_end), spline(b, t_end)));
mutable_constraint->Add2dPointDerivativeConstraint(t_end, Eigen::Vector2d(spline_1st(a, t_end), spline_1st(b, t_end)));
分段之间平滑约束
这部分的约束主要在于将分段点连接处进行平滑操作,比如一阶连续,二阶连续,三阶连续。
假设 \(seg_k\) 和 \(seg_{k+1}\) 是相连接的, \(seg_k\) 段累积的 s 距离值为 \(s_k\). 注意这里的 \(s_0\) 不同与前面说的为整段路径的init point初始点,而是每段自身的起点处,所以对 \(seg_k\) 来说他的累积距离 \(s_k\) 正是 \(seg_{k+1}\) 的起点 \(s_0\)
以下为计算过程:
使用 \(s_0\) = 0 在上式中,然后同样添加如下的等式约束:
实际代码中只添加了三阶连续:(但是三阶连续的前提不是一二阶也连续吗?)
mutable_constraint->Add2dThirdDerivativeSmoothConstraint();
对采样点的边界约束
沿着路径均匀采样 m 个点,检查这些点是否触碰到了障碍物的边界,然后将其转成QP问题的不等式约束:
首先根据道路宽度和周围障碍物找到点 \((s_j, l_j)\) and \(j\in[0, m]\) 的下边界 \(l_{lb,j}\),然后不等式约束的计算如下:
-
杰哥回复:这是一个box形状,不是说从0-10是我的采样增加区间 而是以ref为0,-10 - 10采样增加区间
-
lower_bound.emplace_back(d_lateral - lat_tol[i]); lower_bound.emplace_back(d_longitudinal - lon_tol[i]); upper_bound.emplace_back(d_lateral + lat_tol[i]); upper_bound.emplace_back(d_longitudinal + lon_tol[i]);
如此手绘图所示:
-
好像可以对某一个 \(l_{ub,j}\) 进行扩大,使其表达障碍物的膨胀。但是我感觉这个点应该是说已知环境中,不包括动态障碍物,类似于在地图已经建好的这层上去做边界约束,而不是实时根据障碍物去做约束
这样的 因为输入的边界约束是station lateral boundary,其实是依据你的reference line 参考线然后有设定纵向和横向的最大便宜角度进去,比如test代码中是0.2
同样的,上界 \(l_{ub,j}\) 同样也可以以这种不等式约束计算:
③ 代码总结
首先完整的test代码可见gitee链接,此处仅将上述提到的进行说明
// solver
OsqpSpline2dSolver osqp_spline2d_solver(t_knots, 5);
mutable_kernel->Add2dReferenceLineKernelMatrix(t_coord, ref_ft, 0.5);
// 添加连续平滑约束 三阶
mutable_constraint->Add2dThirdDerivativeSmoothConstraint();
// 添加初始点
mutable_constraint->Add2dPointConstraint(0, Eigen::Vector2d(spline(a, 0), spline(b, 0)));
mutable_constraint->Add2dPointDerivativeConstraint(0, Eigen::Vector2d(spline_1st(a, 0), spline_1st(b, 0)));
// 添加end point
double t_end = t_coord.back();
mutable_constraint->Add2dPointConstraint(t_end, Eigen::Vector2d(spline(a, t_end), spline(b, t_end)));
mutable_constraint->Add2dPointDerivativeConstraint(t_end, Eigen::Vector2d(spline_1st(a, t_end), spline_1st(b, t_end)));
// 添加边界约束
mutable_constraint->Add2dStationLateralBoundary(t_coord, ref_ft, ref_theta,lon_tol, lat_tol);
实际上看上去 数学公式都被隐去了 是因为osqp这层 apollo加了自己的spline,所以最后main呈现的就是这样的形式,如果跳转各个部分的更为仔细的可以发现更多,比如添加边界约束:
bool Spline2dConstraint::Add2dStationLateralBoundary(
const std::vector<double>& t, const vector_Eigen<Eigen::Vector2d>& ref_xy,
const std::vector<double>& ref_theta, const std::vector<double>& lon_tol,
const std::vector<double>& lat_tol) {
if (t.size() != ref_xy.size() || ref_xy.size() != ref_theta.size() ||
ref_theta.size() != lon_tol.size() || lon_tol.size() != lat_tol.size()) {
return false;
}
Eigen::MatrixXd sl_constraints =
Eigen::MatrixXd::Zero(2 * t.size(), total_param_);
std::vector<double> lower_bound, upper_bound;
for (uint32_t i = 0; i < t.size(); ++i) {
const uint32_t index = FindSegStartIndex(t[i]);
const double d_lateral = SignDistance(ref_xy[i], ref_theta[i]);
const double d_longitudinal =
SignDistance(ref_xy[i], ref_theta[i] - M_PI_2);
const double t_corrected = t[i] - t_knots_[index];
std::vector<double> lateral_coef = AffineCoef(ref_theta[i], t_corrected);
std::vector<double> longitudianl_coef =
AffineCoef(ref_theta[i] - M_PI_2, t_corrected);
const uint32_t index_offset = index * spline_param_num_;
// 构建公式10,11的左边矩阵
for (uint32_t j = 0; j < spline_param_num_; ++j) {
sl_constraints(2 * i, index_offset + j) = lateral_coef[j];
sl_constraints(2 * i, index_offset + total_param_ / 2 + j) =
lateral_coef[spline_param_num_ + j];
sl_constraints(2 * i + 1, index_offset + j) = longitudianl_coef[j];
sl_constraints(2 * i + 1, index_offset + total_param_ / 2 + j) =
longitudianl_coef[spline_param_num_ + j];
}
lower_bound.emplace_back(d_lateral - lat_tol[i]);
lower_bound.emplace_back(d_longitudinal - lon_tol[i]);
upper_bound.emplace_back(d_lateral + lat_tol[i]);
upper_bound.emplace_back(d_longitudinal + lon_tol[i]);
}
return coxy_constraint_.AddConstraint(sl_constraints, lower_bound,
upper_bound);
}
由这里我们可以看到公式 10 和公式 11的矩阵形式的构建
④ 效果示意
运行上面给的Gitee代码,可以得到下面这样一幅图:
ref就是每小段都是五次样条出来的,做图就是sl坐标系下生成出来的,右图为计算了他们的每个点连接处的曲率,可以看到经过osqp spline曲率约束 cost 都有明显的生效(虽然在这个例子中展现的不大)