UVa10025 The ? 1 ? 2 ? ... ? n = k problem 数学思维+规律
? 1 ? 2 ? ... ? n = k problem
The problem
Given the following formula, one can set operators '+' or '-' instead of each '?', in order to obtain a given k
? 1 ? 2 ? ... ? n = k
For example: to obtain k = 12 , the expression to be used will be:
- 1 + 2 + 3 + 4 + 5 + 6 - 7 = 12
with n = 7
The Input
The first line is the number of test cases, followed by a blank line.
Each test case of the input contains integer k (0<=|k|<=1000000000).
Each test case will be separated by a single line.
The Output
For each test case, your program should print the minimal possible n (1<=n) to obtain k with the above formula.
Print a blank line between the outputs for two consecutive test cases.
Sample Input
2 12 -3646397
Sample Output
7 2701
数学思维:
看似复杂,情况很多种,乍一看摸不着头脑的一道题,让人心生畏惧,Don't panic
数学思维,找规律求解
对于0=1+2-3 3
1=-1+2 2
2=1-2+3 3
依次查看,每个数的结果好像没什么规律
再看,会发现,若1变为-1,实际上将原数-2
2变为-2,实际上将原数-4 均为偶数,我们进步了一大步,我感觉离成功不远了,代码铁定不复杂,只需要我们想清楚
我们持续+,直到数s>k,此时若(s-k)%2==0,说明,s可将组成s的数中的一部分变为负数来的到k
问题转化为求满足s>k&&(s-k)%2==0的数s时,所经历的最大数
注意输出格式!减少不必要的麻烦。
PS:像这种基本的找规律题,数学思维,看得出就看,看不出就试
Version2.0
#include "cstdio" #include "cstring" #include "cstdlib" #include "iostream" #include "vector" #include "queue" using namespace std; int main() { int t,k,s,n; scanf("%d",&t); while(t--) { scanf("%d",&k); if(k==0) printf("3\n"); else { if(k<0)k=-k; s=n=0; while(s<k)s+=++n; while((s-k)&1)s+=++n; printf("%d\n",n); } if(t) printf("\n"); } }
Version 1.0
#include "cstdio" #include "cstring" #include "cstdlib" #include "iostream" #include "vector" #include "queue" using namespace std; #define LL long long int main() { LL k; int T; scanf("%d",&T); while(T--) { scanf("%lld",&k); int sum=0; int flag=0; if(k==0) { printf("3\n"); } else { if(k<0)k=-k; int t=1; while(1) { if(sum==k)///全为+ 15 break; else if(sum>k) { if((sum-k)%2==0)///-在前面 13 break; if(sum-t==k)///-在最后 { flag=1; break; } else if(sum-t>k) { if((sum-t-k)%2==0)///-前后均有 12 { flag=1; break; } } } sum+=t; t++; } if(flag)t++; printf("%d\n",--t); } if(T)printf("\n"); } return 0; }