编译原理:消除左递归
1.将以下文法消除左递归,分析符号串 i*i+i 。
并分别求FIRST集、FOLLOW集,和SELECT集
E -> E+T | T
E -> TE'
E' -> +TE'|ε
T -> T*F | F
T -> FT'
T' -> *F|ε
F -> (E) | i
解析:
1.First集:
First(TE') = {T}
First(+TE') = {+}
First(ε) = {ε}
First(FT') = {F}
First(*F) = {*}
First((E)) = {(}
First(i) = {i}
2.Follow集:
Follow(E) = {)}
Follow(E') = {ε}
Follow(T) = {E'}
Follow(T') ={ε}
Follow(F) = {ε}
3.Select集:
Select(E -> TE') = First(TE') = {T}
Select(E' -> +TE') = First(+TE') = {+}
Select(E' -> ε) = (First(ε)-{ε})∪Follow(E') = {)}
Select(T -> FT') = First(FT') = {F}
Select(T' -> *F) = First(*F) = {*}
Select(T' -> ε) = (First(ε)-{ε})∪Follow(T') = {ε}
Select(F -> (E)) = First((E)) = {(}
Select(F -> i ) = First(i) = {i}
2.P101练习7(2)(3)文法改写,并分别求FIRST集、FOLLOW集,和SELECT集
(2)
A -> aABe|a
B -> Bb|d
解析:
提取左公因子:
A→aA'
A'→ABe|ε
消除公因式:
B→dB'
B'→bB'|ε
1.First集:
First(aA') = {a}
First(ABe) = {a}
First(ε) = {ε}
First(dB') = {d}
First(bB') = {b}
2.Follow集:
Follow(A) = {Be}
Follow(A') = {ε}
Follow(B) = {e}
Follow(B') = {ε}
3.Select集:
Select(A -> aA') = First(aA') = {a}
Select(A' -> ABe) = First(ABe) = {a}
Select(A' -> ε) = (First(ε)-{ε})∪Follow(A')) = {ε}
Select(B -> dB')= First(dB') = {d}
Select(B' -> bB') = First(bB') = {b}
Select(B' -> ε) = (First(ε)-{ε})∪Follow(B')) = {ε}
(3)
S -> Aa|b
A ->SB
B ->ab
②代入①:
S -> SBa|b
消除左递归:
S - > bS'
S' -> BaS'|ε
B -> ab
1.First集:
First(SBa) = {a}
First(b) = {b}
First(bS') = {b}
First(BaS') = {a}
First(ε) = {ε}
First(ab) = {a}
2.Follow集:
Follow(S) = {B}
Follow(S') = {ε}
Follow(B) = {S'}
3.Select集:
Select(S -> SBa) = First(SBa) = {a}
Select(S -> b) = First(b) = {b}
Select(S -> bS') = First(bS') = {b}
Select(S' -> BaS') = First(BaS') = {a}
Select(S' -> ε) = (First(ε)-{ε})∪Follow(S')) = {ε}
Select(B -> ab) = First(ab) = {a}
课堂练习:求以下文法的FIRST集、FOLLOW集和SELECT集。
(1)
S->Ap
A->a |ε
A->cA
A->aA
解析:
1.First集:
First(S) = {a,c,p}
First(a) = {a}
First(ε) = {ε}
First(cA) = {c}
FIrst(aA) = {a}
2.Follow集:
Follow(S) = {ε}
Follow(A) ={p}
3.Select集:
Select(S->Ap) = First(Ap) ={p}
Select(A -> a) = FIrst(a) = {a}
Select(A -> ε) = First(ε) = {ε}
Select(A -> cA) = First(cA) ={c}
Select(A -> aA) =First(aA) = {a}
(2)
S->Ap
S->Bq
A->a
A->cA
B->b
B->dB
解析:
1.First集:
First(Ap) = {a,c}
First(Bq) = {b,d}
First(a) = {a}
First(cA) = {c}
First(b) = {b}
First(dB) = {d}
2.Follow集:
Follow(S) = {ε}
Follow(A) = {p}
Follow(B) = {q}
3.Select集:
Select(S -> Ap) = First(Ap) = {a,c}
Select(S - >Bq) = First(Bq) = {q}
Select(A - > a) = First(a) = {a}
Select(A -> cA) = First(cA) = {c}
Select(B -> b)= FIrst(b) = {b}
Select(B ->dB) = FIrst(dB) = {d}