(EX)中国剩余定理

中国剩余定理

问题引入:

有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。问物几何?《孙子算经》
就是计算一个数\(x\)满足\(\begin{cases} x≡2(MOD\ 3) \\ x≡3(MOD\ 5) \\ x≡2(MOD\ 7) \end{cases}\)

中国剩余定理:

首先对于同余方程,以下等式显然成立:

\[(\sum a_i)\%p ≡ \sum (a_i\%p)\ (MOD\ p)① \]

接下来我们构造三个数\(a,b,c\)满足以下条件:

\[\left[ \begin{array}{ccc} a\%3=2 & a\%5=0 & a\%7=0 \\ b\%3=0 & b\%5=3 & b\%7=0 \\ c\%3=0 & c\%5=0 & c\%7=2 \end{array} \right]\]

可以发现根据等式\(①\)\(a+b+c\)即为所求\(x\)的一个解
现在考虑如何构造\(a,b,c\)三个数
首先\(a\)\(5\)的倍数也是\(7\)的倍数,所以\(a\)\(35\)的倍数,同理,\(b\)\(21\)的倍数,\(c\)\(15\)的倍数
所以令

\[\begin{cases} a = 35\cdot k_a \\ b = 21\cdot k_b \\ c = 15\cdot k_c \end{cases}\]

\[\begin{cases} 35\cdot k_a ≡ 2\ (MOD\ 3)\\ 21\cdot k_b ≡ 3\ (MOD\ 5)\\ 15\cdot k_c ≡ 2\ (MOD\ 7) \end{cases}\]

\(35\)在模\(3\)意义下的逆元为\(inv_a\)\(21\)在模\(5\)意义下的逆元为\(inv_b\)\(15\)在模\(7\)下的逆元为\(inv_c\)
\(inv_a = 2,inv_b = 1,inv_c = 1\)

\[\begin{cases} k_a = 2\cdot inv_a = 4\\ k_b = 3\cdot inv_b = 3\\ k_c = 2\cdot inv_c = 2 \end{cases} \]

所以:

\[\begin{cases} a = 140\\ b = 63\\ c = 30 \end{cases} \]

所以得到\(x\)的一个解\(x=a+b+c=233\)
如果要求得所有\(x\)中最小的非负整数解,只要用\(x\)\(lcm(3,5,7)\)取模即可
所以最后得到的最小的\(x = 233\%(3\cdot 5\cdot 7)=23\)

推广到一般情况下:

\[求出最小的x满足: \begin{cases} x ≡ r_1\ (MOD\ p_1)\\ x ≡ r_2\ (MOD\ p_2)\\ \quad \quad \quad \vdots\\ x ≡ r_m\ (MOD\ p_m)\\ \end{cases},其中\forall gcd(p_i,p_j)=1\]

\[记 P = \prod_{i=1}^{m}p_i,inv_i为\frac{P}{p_i}在模p_i意义下的逆元 \]

\[在模P意义下得到x的唯一解:x = (\sum_{i=1}^{m}r_i\cdot \frac{P}{p_i}\cdot inv_i)\%P \]

例题:

HDU1370 Biorhythms 🔗

view code
//#pragma GCC optimize("O3")
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<bits/stdc++.h>
using namespace std;
function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
typedef long long int LL;
const LL p[3] = {23,28,33};
void exgcd(LL a, LL b, LL &x, LL &y){
    if(!b){ x = 1; y = 0; return; }
    exgcd(b,a%b,y,x);
    y -= a / b * x;
}
void solve(LL a[], LL d, int kase){
    for(int i = 0; i < 3; i++) a[i] %= p[i];
    LL P = p[0] * p[1] * p[2], sum = 0;
    for(int i = 0; i < 3; i++){
        LL inv, y;
        exgcd(P/p[i],p[i],inv,y);
        sum = (sum + P/p[i]*inv%P*a[i]%P) % P;
    }
    LL day = (sum%P+P)%P - d; if(day<=0) day += P;
    printf("Case %d: the next triple peak occurs in %I64d days.\n",kase,day);
}
int main(){
    int tt; ____();
    for(cin >> tt; tt; tt--){
        LL a[3], d;
        int kase = 1;
        while(cin >> a[0] >> a[1] >> a[2] >> d and (a[0]+a[1]+a[2]+d+4)) solve(a,d,kase++);
    }
    return 0;
}

扩展中国剩余定理

\[求解线性同余方程组: \begin{cases} x ≡ r_1\ (MOD\ p_1) \\ x ≡ r_2\ (MOD\ p_2) \\ \quad \quad \quad \vdots \\ x ≡ r_m\ (MOD\ p_m) \end{cases} ,\exists gcd(p_i,p_j)\ne 1 \]

首先考虑两个同余方程:

\[\begin{cases} x ≡ r_1\ (MOD\ p_1) \\ x ≡ r_2\ (MOD\ p_2) \end{cases} ,gcd(p_1,p_2)\ne 1 \]

可以得到:

\[p_1 \cdot k_1 + r_1 = p_2 \cdot k_2 + r_2\]

\[\Downarrow \]

\[p_1 \cdot k_1 - p_2 \cdot k_2 = r_2 - r_1 \]

根据裴蜀定理\((r_2-r_1) \% gcd(p_1,p_2)\ne 0\)的情况下是无解的
\((r_2-r_1) \% gcd(p_1,p_2) = 0\)的情况下,可以通过扩展欧几里得求得\(k_1\)\(k_2\)
然后就可以得到:

\[x ≡ p_1\cdot k_1 + r_1\ (MOD\ lcm(p_1,p_2)) \]

\[OR \]

\[x ≡ p_2\cdot k_2 + r_2\ (MOD\ lcm(p_1,p_2)) \]

对于多个方程的情况下,两两合并即可

例题:

洛谷P4777🔗

view code
//#pragma GCC optimize("O3")
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<bits/stdc++.h>
using namespace std;
function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
typedef long long int LL;
LL ksc(LL a, LL b, LL mod){
    LL ret = 0;
    int flag = ((a<0)^(b<0)) ? -1 : 1;
    a = abs(a); b = abs(b);
    while(b){
        if(b&1) ret = (ret + a) % mod;
        b >>= 1;
        a = (a + a) % mod;
    }
    return ret * flag;
}
LL exgcd(LL a, LL b, LL &x, LL &y){
    if(!b){ x = 1, y = 0; return a; }
    LL g = exgcd(b,a%b,y,x);
    y -= a/b*x;
    return g;
}
pair<LL,LL> excrt(LL b1, LL p1, LL b2, LL p2){
    LL d = b2 - b1, x, y;
    LL g = exgcd(p1,p2,x,y);
    LL p = p1 / g * p2;
    x = ksc(x,d/g,p);
    return make_pair(((ksc(x,p1,p)+b1)%p+p)%p,p);
}
int main(){
    ____();
    int n;
    LL b, p;
    cin >> n >> p >> b;
    for(int i = 1; i < n; i++){
        LL bb, pp;
        cin >> pp >> bb;
        tie(b,p) = excrt(b,p,bb,pp);
    }
    cout << b << endl;
    return 0;
}
posted @ 2020-06-27 18:53  _kiko  阅读(280)  评论(0编辑  收藏  举报