2015 Multi-University Training Contest 1(7/12)

2015 Multi-University Training Contest 1

A.OO’s Sequence

计算每个数的贡献
找出第\(i\)个数左边最靠右的因子位置\(lp\)和右边最靠左的因子位置\(rp\)
对答案的贡献就是\((rp-i)*(i-lp)\)
最后答案就是\(\sum_{i=1}^{n}(rp_i-i)*(i-lp_i)\)
预处理出来所有的因子,复杂度\(O(n\sqrt{10000})\)

//#pragma GCC optimize("O3")
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<bits/stdc++.h>
using namespace std;
function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
typedef long long int LL;
const int MAXN = 1e5+7;
const LL MOD = 1e9+7;
int n,A[MAXN],pos[MAXN],rp[MAXN],lp[MAXN];
vector<int> vec[MAXN];
void preprocess(){
    for(int i = 1; i <= 10000; i++){
        for(int j = i; j <= 10000; j += i){
            vec[j].push_back(i);
        }
    }
}
void solve(){
    for(int i = 1; i <= n; i++) scanf("%d",&A[i]);
    memset(pos,0,sizeof(pos));
    for(int i = 1; i <= n; i++){
        lp[i] = 0;
        for(int x : vec[A[i]]) lp[i] = max(lp[i],pos[x]);
        pos[A[i]] = i;
    }
    memset(pos,0x3f,sizeof(pos));
    for(int i = n; i >= 1; i--){
        rp[i] = n + 1;
        for(int x : vec[A[i]]) rp[i] = min(rp[i],pos[x]);
        pos[A[i]] = i;
    }
    LL ret = 0;
    for(int i = 1; i <= n; i++) ret = (ret + (i-lp[i]) * (rp[i]-i)) % MOD;
    printf("%I64d\n",ret);
}
int main(){
    preprocess();
    while(scanf("%d",&n)!=EOF) solve();    
    return 0;
}

B.Assignment

把每个位置作为右端点固定之后找长度最长的可行序列
ST表配合二分来找
复杂度\(O(n\log n)\)

//#pragma GCC optimize("O3")
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<bits/stdc++.h>
using namespace std;
function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
const int MAXN = 1e5+7;
typedef long long int LL;
int n,k,ST[2][MAXN][20];
int qmin(int L, int R){
    int d = log2(R-L+1);
    return min(ST[0][L][d],ST[0][R-(1<<d)+1][d]);
}
int qmax(int L, int R){
    int d = log2(R-L+1);
    return max(ST[1][L][d],ST[1][R-(1<<d)+1][d]);
}
void solve(){
    scanf("%d %d",&n,&k);
    for(int i = 1; i <= n; i++){
        scanf("%d",&ST[0][i][0]);
        ST[1][i][0] = ST[0][i][0];
    }
    for(int j = 1; (1<<j) <= n; j++){
        for(int i = 1; i + (1<<j) - 1 <= n; i++){
            ST[0][i][j] = min(ST[0][i][j-1],ST[0][i+(1<<(j-1))][j-1]);
            ST[1][i][j] = max(ST[1][i][j-1],ST[1][i+(1<<(j-1))][j-1]);
        }
    }
    LL ret = 0;
    for(int i = 1; i <= n; i++){
        int l = 1, r = i;
        while(l<=r){
            int mid = (l+r) >> 1;
            if(qmax(mid,i)<qmin(mid,i)+k) r = mid - 1;
            else l = mid + 1;
        }
        ret += i - l + 1;
    }
    printf("%I64d\n",ret);
}
int main(){
    int T;
    for(scanf("%d",&T); T; T--) solve();
    return 0;
}

C.Bombing plan

树形DP
难点在于当前点的选择会影响祖先节点的其他子树
可以先不考虑祖先节点的其他子树,只考虑它还能向上延申最远距离
\(f[i][j]\)表示节点\(i\)能再向上至少控制\(j\)个节点的最小消耗

//#pragma GCC optimize("O3")
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<bits/stdc++.h>
using namespace std;
function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
const int MAXN = 1e5+7;
const int MAXM = 2e2+7;
const int D = 1e2;
const int INF = 0x3f3f3f3f;
typedef long long int LL;
int n,dist[MAXN],f[MAXN][MAXM],depth[MAXN],sum[MAXN][MAXM];
vector<int> G[MAXN];
int dfs(int u, int par){
    depth[u] = depth[par] + 1;
    int maxd = depth[u];
    memset(sum[u],0,sizeof(sum[u]));
    fill(begin(f[u]),end(f[u]),n);
    for(int v : G[u]) if(v!=par){
        maxd = max(maxd,dfs(v,u));
        for(int i = -100; i <= 100; i++) sum[u][i+D] += f[v][i+D];
    }
    for(int i = -100; i < 0; i++) f[u][i+D] = min(f[u][i+D],sum[u][i+D+1]);
    for(int i = 0; i <= 100; i++){
        for(int v : G[u]){
            if(v==par) continue;
            f[u][D+i] = min(f[u][D+i],f[v][D+i+1]+sum[u][D-i]-f[v][D-i]);
        }
    }
    for(int i = -100; i <= depth[u] - maxd - 1; i++) f[u][i+D] = 0;
    f[u][dist[u]+D] = min(f[u][dist[u]+D],1+sum[u][D-dist[u]]);
    for(int i = 99; i >= -100; i--) f[u][i+D] = min(f[u][i+D],f[u][i+1+D]);
    return maxd;
}
void solve(){
    for(int i = 1; i <= n; i++) scanf("%d",&dist[i]);
    for(int i = 1; i <= n; i++) G[i].clear();
    for(int i = 1; i < n; i++){
        int u, v;
        scanf("%d %d",&u,&v);
        G[u].push_back(v); G[v].push_back(u);
    }
    dfs(1,0);
    printf("%d\n",f[1][D]);
}
int main(){
    while(scanf("%d",&n)!=EOF) solve();    
    return 0;
}

D.Candy Distribution

E.Pocket Cube

F.Tree chain problem

评测机出问题了 测不了不知道对不对
按链的LCA深度排序
然后DP

//#pragma GCC optimize("O3")
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<bits/stdc++.h>
using namespace std;
function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
const int MAXN = 1e5+7;
int n,m,dfn[MAXN],son[MAXN],sz[MAXN],tp[MAXN],depth[MAXN],par[MAXN][20],num,sum[MAXN],f[MAXN];
vector<pair<pair<int,int>,int> > chain[MAXN];
vector<int> G[MAXN];
void dfs1(int u, int fa){
    sz[u] = 1; son[u] = 0;
    depth[u] = depth[par[u][0] = fa] + 1;
    for(int i = 1; par[u][i-1]; i++) par[u][i] = par[par[u][i-1]][i-1];
    for(int v : G[u]){
        if(v==fa) continue;
        dfs1(v,u);
        sz[u] += sz[v];
        if(sz[son[u]]<sz[v]) son[u] = v;
    }
}
void dfs2(int u, int top){
    tp[u] = top;
    dfn[u] = ++num;
    if(son[u]) dfs2(son[u],top);
    for(int v : G[u]){
        if(v==son[u] or v==par[u][0]) continue;
        dfs2(v,v);
    }
}
int LCA(int u, int v){
    while(tp[u]!=tp[v]){
        if(depth[tp[u]]<depth[tp[v]]) swap(u,v);
        u = par[tp[u]][0];
    }
    if(depth[u]<depth[v]) return u;
    else return v;
}
void dfs(int u){
    sum[u] = 0;
    for(int v : G[u]){
        if(v==par[u][0]) continue;
        dfs(v);
        sum[u] += f[v];
    }
    f[u] = sum[u];
    for(auto ch : chain[u]){
        int x = ch.first.first, y = ch.first.second, w = ch.second;
        int maxx = sum[u] + w;
        if(x!=u){
            if(sz[x]!=1) maxx += sum[x];
            int z = x;
            for(int i = 0; depth[z]-depth[u]-1; i++) if((depth[z]-depth[u]-1)&(1<<i)) z = par[z][i];
            if(sz[z]!=1) maxx -= f[z];
        }
        if(y!=u){
            if(sz[y]!=1) maxx += sum[y];
            int z = y;
            for(int i = 0; depth[z]-depth[u]-1; i++) if((depth[z]-depth[u]-1)&(1<<i)) z = par[z][i];
            if(sz[z]!=1) maxx -= f[z];
        }
        f[u] = max(f[u],maxx);
    }
}
void solve(){
    scanf("%d %d",&n,&m);
    for(int i = 1; i <= n; i++) G[i].clear();
    for(int i = 1; i <= n; i++) chain[i].clear();
    num = 0;
    for(int i = 1; i < n; i++){
        int u, v; scanf("%d %d",&u,&v);
        G[u].push_back(v); G[v].push_back(u);
    }
    dfs1(1,0); dfs2(1,1);
    for(int i = 0; i < m; i++){
        int u, v, w;
        scanf("%d %d %d",&u,&v,&w);
        chain[LCA(u,v)].push_back(make_pair(make_pair(u,v),w));
    }
    dfs(1);
    printf("%d\n",*max_element(f+1,f+1+n));
}
int main(){
    int T;
    for(scanf("%d",&T); T; T--) solve();
    return 0;
}

G. Tricks Device

保留最短路上的边
然后对于第一问跑最小割
第二问删去最短的一条路径即可

//#pragma GCC optimize("O3")
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<bits/stdc++.h>
using namespace std;
function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
const int MAXN = 2222;
const int INF = 0x3f3f3f3f;
#define S 1
#define T n
struct EDGE{
    int to,cap,rev;
    EDGE(){};
    EDGE(int to, int cap, int rev):to(to),cap(cap),rev(rev){};
};
vector<EDGE> G[MAXN];
int n,m,iter[MAXN],rk[MAXN];
void ADDEDGE(int u, int v, int cap){
    G[u].push_back(EDGE(v,cap,(int)G[v].size()));
    G[v].push_back(EDGE(u,0,(int)G[u].size()-1));
}
bool bfs(){
    memset(rk,0,sizeof(rk));
    memset(iter,0,sizeof(iter));
    rk[S] = 1;
    queue<int> que;
    que.push(S);
    while(!que.empty()){
        int u = que.front();
        que.pop();
        for(auto e : G[u]){
            if(!e.cap or rk[e.to]) continue;
            rk[e.to] = rk[u] + 1;
            que.push(e.to);
        }
    }
    return rk[T]!=0;
}
int dfs(int u, int flow){
    if(u==T) return flow;
    for(int &i = iter[u]; i < (int)G[u].size(); i++){
        auto &e = G[u][i];
        if(!e.cap or rk[e.to]!=rk[u]+1) continue;
        int d = dfs(e.to,min(e.cap,flow));
        if(d){
            e.cap -= d;
            G[e.to][e.rev].cap += d;
            return d;
        }
    }
    return 0;
}
int Dinic(){
    int flow = 0;
    while(bfs()){
        int d = dfs(S,INF);
        while(d){
            flow += d;
            d = dfs(S,INF);
        }
    }
    return flow;
}
int dist[MAXN];
vector<pair<int,int> > GG[MAXN];
void Dijkstra(){
    memset(dist,0x3f,sizeof(dist));
    dist[1] = 0;
    priority_queue<pair<int,int>, vector<pair<int,int>>,greater<pair<int,int>>> que;
    que.push(make_pair(dist[1],1));
    while(!que.empty()){
        auto p = que.top();
        que.pop();
        if(dist[p.second]!=p.first) continue;
        int u = p.second;
        for(auto &e : GG[u]){
            int v = e.first, w = e.second;
            if(dist[v]<=dist[u]+w) continue;
            dist[v] = dist[u] + w;
            que.push(make_pair(dist[v],v));
        }
    }
    for(int i = 1; i <= n; i++){
        for(auto &e : GG[i]){
            int v = e.first, w = e.second;
            if(dist[i]+w==dist[v]){
                ADDEDGE(i,v,1);
            }
        }
    }
}
int BFS(){
    memset(dist,INF,sizeof(dist));
    dist[S] = 0;
    queue<int> que;
    que.push(S);
    while(!que.empty()){
        int u = que.front();
        que.pop();
        for(auto e : G[u]){
            int v = e.to;
            if(dist[v]!=INF) continue;
            dist[v] = dist[u] + 1;
            que.push(v);
        }
    }
    return dist[T]==INF?m:dist[T];
}
void solve(){
    for(int i = 1; i <= n; i++) G[i].clear(), GG[i].clear();
    for(int i = 1; i <= m; i++){
        int u, v, w;
        scanf("%d %d %d",&u,&v,&w);
        GG[u].push_back(make_pair(v,w));
        GG[v].push_back(make_pair(u,w));
    }
    Dijkstra();
    cout << Dinic() << ' ' << m - BFS() << endl;
}
int main(){
    while(scanf("%d %d",&n,&m)!=EOF) solve();
    return 0;
}

H. Unstable

I.Annoying problem

//#pragma GCC optimize("O3")
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<bits/stdc++.h>
using namespace std;
function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
const int MAXN = 1e5+7;
int n,q,dfn[MAXN],idx,dist[MAXN],par[MAXN][20],depth[MAXN],ret,rdfn[MAXN];
vector<pair<int,int> > G[MAXN];
void dfs(int u, int f){
    dfn[u] = ++idx;
    rdfn[idx] = u;
    depth[u] = depth[par[u][0] = f] + 1;
    for(int i = 1; par[u][i-1]; i++) par[u][i] = par[par[u][i-1]][i-1];
    for(auto &e : G[u]){
        if(e.first==f) continue;
        dist[e.first] = dist[u] + e.second;
        dfs(e.first,u);
    }
}
int LCA(int u, int v){
    if(depth[u]<depth[v]) swap(u,v);
    for(int i = 0; depth[u] - depth[v]; i++) if((depth[u]-depth[v])&(1<<i)) u = par[u][i];
    if(u==v) return u;
    for(int i = 19; i >= 0; i--) if(par[u][i]!=par[v][i]){
        u = par[u][i];
        v = par[v][i];
    }
    return par[u][0];
}
set<int> S1,S2;
int cal(int u){
    int x,y;
    if(S1.lower_bound(dfn[u]+1)!=S1.end() and S2.lower_bound(-dfn[u]+1)!=S2.end()){
        x = -*S2.lower_bound(-dfn[u]+1);
        y = *S1.lower_bound(dfn[u]+1);
    }
    else{
        x = *S1.begin();
        y = *S1.rbegin();
    }
    x = rdfn[x]; y = rdfn[y];
    return dist[u] + dist[LCA(x,y)] - dist[LCA(x,u)] - dist[LCA(y,u)];
}
void rua(){
    int op, x;
    scanf("%d %d",&op,&x);
    if(op==1){
        if(!S1.count(dfn[x])){
            if(!S1.empty()) ret += cal(x);
            S1.insert(dfn[x]);
            S2.insert(-dfn[x]);
        }
    }
    else{
        if(S1.count(dfn[x])){
            S1.erase(dfn[x]);
            S2.erase(-dfn[x]);
            if(!S1.empty()) ret -= cal(x);
        }
    }
    printf("%d\n",ret);
}
void solve(int kase){
    scanf("%d %d",&n,&q);
    for(int i = 1; i <= n; i++) G[i].clear();
    memset(par,0,sizeof(par));
    idx = 0; S1.clear(); S2.clear(); ret = 0;
    for(int i = 1; i < n; i++){
        int u, v, w;
        scanf("%d %d %d",&u,&v,&w);
        G[u].push_back(make_pair(v,w));
        G[v].push_back(make_pair(u,w));
    }
    dfs(1,0);
    printf("Case #%d:\n",kase);
    while(q--) rua();
}
int main(){
    int T, kase = 0;
    for(scanf("%d",&T); T; T--) solve(++kase);
    return 0;
}

J. Y sequence

容斥+迭代
迭代枚举答案\(m\),然后计算删掉的个数,对于每个指数\(pw\)计算一遍,删掉的数量是\(pow(m,\frac{1}{pw})\),发现是个关于因子的容斥,所以容斥系数是莫比乌斯函数
二分会T,所以用迭代来做,复杂度很玄学

//#pragma GCC optimize("O3")
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<bits/stdc++.h>
using namespace std;
function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
typedef long long int LL;
const int MAXN = 111;
int npm[MAXN],mu[MAXN];
LL n,r;
vector<int> prime;
void sieve(){
    mu[1] = 1;
    for(int i = 2; i < MAXN; i++){
        if(!npm[i]){
            prime.push_back(i);
            mu[i] = -1;
        }
        for(int j = 0; j < (int)prime.size(); j++){
            if(i*prime[j]>=MAXN) break;
            npm[i*prime[j]] = true;
            mu[i*prime[j]] = -mu[i];
            if(i%prime[j]==0){
                mu[i*prime[j]] = 0;
                break;
            }
        }
    }
}
vector<int> pw;
void prep(){
    pw.clear();
    for(int i = 0; prime[i]<=r; i++){
        int sz = pw.size();
        for(int j = 0; j < sz; j++){
            int np = pw[j] * prime[i];
            if(np>63) continue;
            pw.push_back(np);
        }
        pw.push_back(prime[i]);
    }
}
LL f(LL m){
    LL tot = 0;
    for(auto p : pw) tot += mu[p] * ((LL)pow(m+.5,1./p) - 1);
    return m-1+tot;
}
void solve(){
    scanf("%I64d %I64d",&n,&r);
    prep();
    LL tmp = f(n), ret = n;
    while(tmp<n){
        ret += n - tmp;
        tmp = f(ret);
    }
    printf("%I64d\n",ret);
}

int main(){
    sieve();
    int T;
    for(scanf("%d",&T); T; T--) solve();
    return 0;
}

K. Solid Geometry Homework

L. Circles Game

只会口胡
圆扫描线+树上删边游戏

posted @ 2020-05-26 16:58  _kiko  阅读(136)  评论(0编辑  收藏  举报