HDU6430 Problem E. TeaTree【dsu on tree】
Problem Description
Recently, TeaTree acquire new knoledge gcd (Greatest Common Divisor), now she want to test you.
As we know, TeaTree is a tree and her root is node 1, she have n nodes and n-1 edge, for each node i, it has it’s value v[i].
For every two nodes i and j (i is not equal to j), they will tell their Lowest Common Ancestors (LCA) a number : gcd(v[i],v[j]).
For each node, you have to calculate the max number that it heard. some definition:
In graph theory and computer science, the lowest common ancestor (LCA) of two nodes u and v in a tree is the lowest (deepest) node that has both u and v as descendants, where we define each node to be a descendant of itself.
给出一棵以\(1\)为根的树,每个点有权值\(w[i]\),两个不同的点\(u,v\)可以使他们的\(lca\)得到一个大小为\(gcd(w[u],w[v])\)值,现在问每个点所能得到的最大值
可以考虑枚举每个\(lca\),然后任意两个不同的子树中的两个值取\(gcd\),这样是\(n^2\)的
考虑启发式合并,用一个数组来记录所有出现过的因子,假设当前处理到点\(u\),现在已经处理出了一些\(u\)的子树中的所有因子了,现在到\(v\)的子树,那就可以先对\(v\)为根的子树中的所有点找出最大出现过的因子,然后再把子树里的所有点的因子加入进去,这样可以防止处理到相同子树中的点
//#pragma GCC optimize("O3")
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<bits/stdc++.h>
using namespace std;
function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
const int MAXN = 1e5+7;
int n,w[MAXN],sz[MAXN],son[MAXN],ret[MAXN],res,app[MAXN],st[MAXN],ed[MAXN],id[MAXN],num;
vector<int> d[MAXN],G[MAXN];
void preprocess(){
for(int i = 1; i < MAXN; i++) for(int j = i; j < MAXN; j+=i) d[j].emplace_back(i);
for(int i = 1; i < MAXN; i++) reverse(d[i].begin(),d[i].end());
}
void dfs(int u){
sz[u] = 1; st[u] = ++num; id[num] = u;
for(int v : G[u]){
dfs(v);
sz[u] += sz[v];
if(sz[v]>sz[son[u]]) son[u] = v;
}
ed[u] = num;
}
void update(int val, int inc){ for(int x : d[val]) app[x] += inc; }
int query(int val){ for(int x : d[val]) if(app[x]) return x; return -1; }
void search(int u, bool clear){
for(int v : G[u]) if(v!=son[u]) search(v,true);
if(son[u]) search(son[u],false);
res = -1;
for(int v : G[u]) if(v!=son[u]) {
for(int i = st[v]; i <= ed[v]; i++) res = max(res,query(w[id[i]]));
for(int i = st[v]; i <= ed[v]; i++) update(w[id[i]],1);
}
res = max(res,query(w[u]));
update(w[u],1);
ret[u] = res;
if(clear) for(int i = st[u]; i <= ed[u]; i++) update(w[id[i]],-1);
}
void solve(){
scanf("%d",&n);
for(int i = 2; i <= n; i++){
int par; scanf("%d",&par);
G[par].emplace_back(i);
}
for(int i = 1; i <= n; i++) scanf("%d",&w[i]);
dfs(1);
search(1,false);
for(int i = 1; i <= n; i++) printf("%d\n",ret[i]);
}
int main(){
preprocess();
solve();
return 0;
}