BZOJ3238 [Ahoi2013]差异 【SAM or SA】
给定一个串,问其任意两个后缀的最长公共前缀长度的和
1.又是后缀,又是\(lcp\),很显然直接拿\(SA\)的\(height\)数组搞就好了,配合一下单调栈
//#pragma GCC optimize("O3")
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<bits/stdc++.h>
using namespace std;
function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
using LL = int_fast64_t;
const int MAXN = 5e5+7;
struct SA{
int sa[MAXN],rk[MAXN],c[MAXN],sec[MAXN],height[MAXN],n;
char s[MAXN];
void getsa(int m){
n = strlen(s+1);
for(int i = 0; i <= m; i++) c[i] = 0;
for(int i = 1; i <= n; i++) c[rk[i]=s[i]]++;
for(int i = 1; i <= m; i++) c[i] += c[i-1];
for(int i = n; i >= 1; i--) sa[c[rk[i]]--] = i;
for(int k = 1; k <= n; k <<= 1){
int p = 0;
for(int i = n - k + 1; i <= n; i++) sec[++p] = i;
for(int i = 1; i <= n; i++) if(sa[i]>k) sec[++p] = sa[i] - k;
for(int i = 0; i <= m; i++) c[i] = 0;
for(int i = 1; i <= n; i++) c[rk[sec[i]]]++;
for(int i = 1; i <= m; i++) c[i] += c[i-1];
for(int i = n; i >= 1; i--) sa[c[rk[sec[i]]]--] = sec[i];
p = 0;
swap(rk,sec);
rk[sa[1]] = ++p;
for(int i = 2; i <= n; i++) rk[sa[i]] = sec[sa[i]]==sec[sa[i-1]] and sec[sa[i]+k]==sec[sa[i-1]+k] ? p : ++p;
if(p==n) break;
m = p;
}
}
void getheight(){
int k = 0;
for(int i = 1; i <= n; i++){
if(k) k--;
int j = sa[rk[i]-1];
while(s[i+k]==s[j+k]) k++;
height[rk[i]] = k;
}
}
LL solve(){
getsa(128);
getheight();
LL ret = (n+1ll) * n * (n-1ll) / 2;
stack<pair<int,int> > stk;
LL tot = 0;
for(int i = 1; i <= n; i++){
int num = 1;
while(!stk.empty() and height[i]<=height[stk.top().first]){
num += stk.top().second;
tot -= 1ll * stk.top().second * (height[stk.top().first] - height[i]);
stk.pop();
}
stk.push(make_pair(i,num));
tot += height[i];
ret -= tot * 2;
}
return ret;
}
}sa;
char s[MAXN];
int main(){
scanf("%s",sa.s+1);
printf("%lld\n",sa.solve());
return 0;
}
2.考虑用\(SAM\)来做,把串反转一下,现在要计算的是任意两个前缀的最长公共后缀的和
\(SAM\)有个性质,那就是两个点的\(LCA\)的状态表示的最长串,是这两个点表示的子串的最长公共后缀
所以我们可以枚举所有的\(LCA\),然后计算每一个\(LCA\)的贡献,先计算其任意两棵子树对应的贡献,再计算子树和当前节点产生的贡献
//#pragma GCC optimize("O3")
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<bits/stdc++.h>
using namespace std;
using LL = int_fast64_t;
const int MAXN = 1e6+7;
struct SAM{
int len[MAXN],link[MAXN],ch[MAXN][26],cnt[MAXN],tot,last;
vector<int> G[MAXN];
SAM(){ link[0] = -1; }
void extend(int c){
int np = ++tot, p = last;
len[np] = len[last] + 1; cnt[np] = 1;
while(p!=-1 and !ch[p][c]){
ch[p][c] = np;
p = link[p];
}
if(p==-1) link[np] = 0;
else{
int q = ch[p][c];
if(len[p]+1==len[q]) link[np] = q;
else{
int clone = ++tot;
len[clone] = len[p] + 1;
link[clone] = link[q];
memcpy(ch[clone],ch[q],sizeof(ch[q]));
link[np] = link[q] = clone;
while(p!=-1 and ch[p][c]==q){
ch[p][c] = clone;
p = link[p];
}
}
}
last = np;
}
void dfs(int u, LL &ret){
int all = 0;
for(int i = 0; i < (int)G[u].size(); i++){
int v = G[u][i];
dfs(v,ret);
all += cnt[v];
}
for(int i = 0; i < (int)G[u].size(); i++){
int v = G[u][i];
ret -= 1ll * (all - cnt[v]) * cnt[v] * len[u];
}
ret -= 2ll * all * cnt[u] * len[u];
cnt[u] += all;
}
void solve(char *s){
int n = strlen(s);
for(int i = 0; i < n; i++) extend(s[i]-'a');
for(int i = 1; i <= tot; i++) G[link[i]].push_back(i);
LL ret = n * (n-1ll) * (n+1ll) / 2;
dfs(0,ret);
printf("%lld\n",ret);
}
}sam;
char s[MAXN];
int main(){
scanf("%s",s);
sam.solve(s);
return 0;
}