Median of Two Sorted Arrays
A fast method to determine the number is odd or even:
total & 0x1 //true, if total is odd total & 0x1 //false, if total is even
Problem Statement
There are two sorted arrays A and B of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be $O(\log (m+n))$.
In order to solve the problem of finding median, we can consider a more general problem, i.e. finding the $k$-th minimum element of an array. If we solve the general problem, we can get the median by
int total = m + n; if(total & 0x1) return findKthSortedArrays(A, m, B, n, total/2+1); else return (0.0 + findKthSortedArrays(A, m, B, n, total/2) + findKthSortedArrays(A, m, B, n, total/2+1)) / 2; //use 0.0 + ... to avoid round down.
We will use the thinking of binary search to delete $\frac{k}{2}$ elements of the first $k$-th elements, and recurse the smaller parts with $\frac{k}{2}$ size. Thus we only need $O(\log{k})$ running time for searching.
First, let's do some pre-operation. When we get two arrays A and B, we can assume that the length of A, m, is not greater than the length of B, n. Otherwise, we can swap A and B. The details as follows:
int double findKthSortedArrays(int A[], int m, int B[], int n, int k){ if(m > n) return findKthSortedArrays(B, n, A, m, k); ...... }
Then we can consider the part deleted. We define
$pA = min(\frac{k}{2}, m)$
$pB = k - pA$
Comparing the two element: $A[pA-1]$, $B[pB-1]$.
- If $A[pA-1] < B[pB-1]$, it means all the elements {$A[0], ..., A[pA-1]$} are below the $k^{th}$ minimum element in array $A\cup B$. Thus they can be deleted. Because they're irrelevant with the the $k^{th}$ minimum element. Then recurse the smaller parts with (k-pA) size.
Proof:
- We duduce it by controdiction.
- If not, $A[pA-1]$ at least should be the k-th minimum element in array $A\cup B$.
- On the other hand, as $A[pA-1] < B[pB-1]$, there're at most (pB-1) elements, {$B[0], ..., B[pB-2]$}, smaller than $A[pA-1]$. Thus, there're at most (pA-1)+(pB-1) elements, {$A[0], ..., A[pA-2], B[0], ..., B[pB-2]$}, less than $A[pA-1]$. That means $A[pA-1]$ at most be the $$1+(pA-1)+(pB-1)=pA+pB-2=k-1$$, i.e. the (k-1)-th element in array $A\cup B$.
- From above, we get the controdition.
- If $B[pB-1] < A[pA-1]$, we can say all the elements {$B[0], ..., B[pB-1]$} are below the $k$-th minimum element in array $A\cup B$ with the same deduction.
Thus they can be deleted. Because they're irrelevant with the the $k^{th}$ minimum element. Then recurse the smaller parts with (k-pB) size. -
If $B[pB-1] == A[pA-1]$, it just means we get the $k^{th}$ minimum element, which equals to $B[pB-1]$ or $A[pA-1]$.
We conclude the above as code:
if(A[pA-1] < B[pB-1]) return findKthSortedArrays(A+pA, m-pA, B, n, k-pA); else if(A[pA-1] > B[pB-1]) return findKthSortedArrays(A, m, B+pB, n-pB, k-pB); else return A[pA-1];
Also we need to consider the boundary condition to stop the recursion or exclude other exceptional situations.
- when k > m + n, throw exception, i.e. assert(k <= m+n);
- when m == 0, return B[k-1]; because we have assume n is bigger than m.
- when k == 1, retur $min$(A[0], B[0]); the above boundary condition have excluded the situation A == NULL or B == NULL.
Thus our code could be
assert(k <= m+n); if(0 == m) return B[k-1]; if(1 == k) return min(A[0], B[0]);
The complete code is:
class Solution { private: int min(int a, int b){ return a < b ? a : b; } int findKthSortedArrays(int A[], int m, int B[], int n, int k){ assert(k <= m+n); if(m > n) return findKthSortedArrays(B, n, A, m, k); if(0 == m) return B[k-1]; if(1 == k) return min(A[0], B[0]); int pA = min(k/2, m); int pB = k - pA; if(A[pA-1] < B[pB-1]) return findKthSortedArrays(A+pA, m-pA, B, n, k-pA); else if(A[pA-1] > B[pB-1]) return findKthSortedArrays(A, m, B+pB, n-pB, k-pB); else return A[pA-1]; } public: double findMedianSortedArrays(int A[], int m, int B[], int n) { int total = m + n; if(total & 0x1) return findKthSortedArrays(A, m, B, n, total/2+1); else return (0.0 + findKthSortedArrays(A, m, B, n, total/2)+findKthSortedArrays(A, m, B, n, total/2+1))/2; } };