TwoSum / Three Sum

Let's begin with a naive method.


We first need to sort the array A[n]. And we want to solve the problem by iterating through A from beginning and ending. Then, if the sum is less than the target, we move the leading pointer to next right. When the sum is larger than target, we move the ending pointer to next left. The workflow of finding a, b such that a+b=target as flows:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
vector<vector<int> > res;
 
//we access the array from start point and end point
int* begin = A;
int* end = A + n - 1;
 
while(begin < end){
    if(begin + *end < target)//it means we need to increase the sum
        begin += begin;
     
    if(begin + *end > target)//it means we need to decrease the sum
        end -= end;
         
    if(begin + *end == target){
        begin += begin;
        end -= end;
        res.push_back({*begin, *end});
         
        // there may be some other combinations
        ++begin;
        --end;
    }
}

 

Running Time:

  • O(nlogn) for sorting.
  • O(n) for accessing through the array

 

 In fact, there're some directly optimizations. When we move the pointer begin and end, it will stay the same status if (new begin)==begin, or (new end)==end. Thus, we can move the pointers until it reaches the first different value.

1
2
3
++begin;
while(begin < length && num[begin] == num[begin-1])
    ++begin;

 and

1
2
3
--end;
while(end > 0 && num[end+1] == num[end])
    --end;

 

Assume we have m same *begin, n same *end, we will reduce the running time of iterating moving points from O(mn) to O(m+n).

 

Pay attention the above analysis and optimization are only useful when we find valid combination.

  • When begin+end==target. In this case, we need to move both begin and end. Thus we reduce running time from O(mn) to O(m+n).

 

  • When begin+end<target, we only do m times ++begin. And when we get different begin, we stop. Without the optimization, the loop process is the same. So in this case, we only move the begin. The running time is always O(m).

 

  • When begin+end>target, we have the same deduction. In this case, we only move end. The running time is always O(n).

 

 


 

The Three Sum problem is based on the Two Sum problem above. In the Three Sum prolem, the direct optimization talked above is very important.

If we don't need to implement the three sum problem, we can use the hash table to get O(n) running time.

 

posted @   kid551  阅读(204)  评论(0编辑  收藏  举报
编辑推荐:
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
阅读排行:
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· winform 绘制太阳,地球,月球 运作规律
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· 上周热点回顾(3.3-3.9)
点击右上角即可分享
微信分享提示