浅谈线性递推

线性递推相关

常系数齐次线性递推

对于一般的递归式,我们有

\(\sum\limits_{j=0}^{k}A_{i-j}R_j=0,i\ge k\)

定义\(S=AR\),则\(S\)的最高次为\(k-1\),小于\(R\)的最高次项\(k\)

即求\([x^n]A=\frac{S}{R}\)

若已知\(A\)的前\(k\)项,如果直接与\(R\)卷积即为\(S\),即

\(S=AR(mod \ x^k)\)

现在问题在于求\([x^n]A=\frac{S}{R}\)

Bostan_Mori

对于\([x^n]\dfrac{F(x)}{G(x)}=[x^n]\dfrac{F(x)G(-x)}{G(-x)G(x)}\)

\(U(x)=F(x)G(-x),V(x)=G(-x)G(x)\)

注意到\(V(x)=V(-x)\)\(V(x)\)只有偶数次项,考虑对\(U\)奇数分类

\([x^n]\dfrac{F(x)}{G(x)}=[x^n]\dfrac{U_1(x^2)+xU_2(x^2)}{V'(x^2)}\)

\(n\)为奇数,即为\([x^{\frac{n}{2}}]\dfrac{U_2(x^2)}{V'(x^2)}\)

\(n\)为偶数,即为\([x^{\frac{n}{2}}]\dfrac{U_1(x^2)}{V'(x^2)}\)

int Bostan_Mori(Poly F,Poly G,int N)
{
//	printf("fic\n");
	if(F.size()>=G.size())
	{
		pair<Poly,Poly>DJNB=Mod(F,G);
		int Fsd=0;
		if(N<DJNB.first.size())
		{
			Fsd=DJNB.first.U[N];
		}
		return ((long long)Bostan_Mori(DJNB.second,G,N)+(Fsd))%MOD;
	}
	else
	{
		while(N)
		{
	//		printf("fic\n");
			Poly GT=G;
			for(int i=1;i<GT.size();i+=2)
			{
				GT.U[i]=(MOD-GT.U[i]);
			}
			Poly V=Mul_NTT(G,GT);
			Poly U=Mul_NTT(F,GT);
			F.U.clear();
			G.U.clear();
			for(int i=N&1;i<U.size();i+=2)
			{
				F.U.push_back(U.U[i]);
			}
			for(int i=0;i<V.size();i+=2)
			{
				G.U.push_back(V.U[i]);
			}
			N>>=1;
		}
		if(F.size()==0)
		{
			return 0;
		}
		return ((long long)F.U[0]*inv(G.U[0],MOD))%MOD;
	}
}
int Homo_recursion(Poly A,Poly R,int n)
{
	int k=A.size();
	Poly S=Mul_NTT(A,R);
	S.U.resize(k);
	printf("%d\n",Bostan_Mori(S,R,n));
}

BM

已知有限递推序列\(⟨a_0,a_1,...a_n⟩\),求最短的递推式\(⟨r_0,r_1,...r_m⟩\)

即求最短的\(R\)使得\(AR=S(mod \ x^n)\)\(|S|<|R|\)

定义\(R_n\)为满足\(AR=S(mod \ x^{n+1})\)\(R\),\(S_n\)同理

如果已知\(Rn,Sn\)

\(AR_n=S_n(mod \ x^{n+1})\),直接令\(R_{n+1}=R_n,S_{n+1}=S_n\)

否则\(AR_n=S_n+a_nx^n(mod \ x^{n+1})\),称为失配

考虑上一个失配点\(p\)

\(AR_p=S_p+a_px^p(mod \ x^{p+1})\)

\(x^{n-p}\frac{a_n}{a_p}AR_p=x^{n-p}\frac{a_n}{a_p}S_p+a_nx^n(mod \ x^{n+1})\)

相减即为\(A(R_n-x^{n-p}\frac{a_n}{a_p}R_p)=Sn-x^{n-p}\frac{a_n}{a_p}S_p(mod \ x^{n+1})\)

\(R_{n+1}=R_n-x^{n-p}\frac{a_n}{a_p}R_p\),\(S_{n+1}=S_n-x^{n-p}\frac{a_n}{a_p}S_p\)

\(|R_n|>|S_n|,|R_p|>|S_p|\),则\(|R_{n+1}|>|S_{n+1}|\)


关于验证最短

有一个结论不会证

\(|R_{n+1}|\ge \max(|R_n|,n+1-|R_n|)\)

至于最短,即每次都能取等

假设前\(n\)项均满足

如果\(n+1\)没有失配,则\(|R_{n+1}|=|R_n|\)

如果失配,由递推式得\(|R_{n+1}|=max(|R_n|,|R_p|+n-p)=|R_p|+n-p\),

而对于\(i\in(p,n],|R_i|=|R_{p+1}|,|R_{p+1}|=p+1-|R_p|\)

\(|R_{n+1}|=|R_p|+n-p=n-p+p+1-|R_{p+1}|=n+1-|R_n|\)


至于初始的\(R_0,S_0\)\(R_0=⟨1⟩,S_0=⟨0⟩(|S_0|=-\infin)\)

找到第一个不满足的位置\(p\),即\(AR_p=S_p+a_px^p(mod \ x^{p+1})\),而\(a_0,a_1,a_2...a_{p-1}=0\)

由上结论得\(|R_{p+1}|=p+1-|R_p|=p+1\),则\(R_{p+1}\)的最高次为\(p+1\)

考虑构造\(R_{p+1}=1+x^{p+1},S_{p+1}=a_{p}x^p\),则

\(R_{p+1}A=a_px^p(1+x^{p+1})=a_px^p=S_{p+1}(mod\ x^{p+1})\)

至于为什么\(R_{p+1}=1+x^{p+1}\)还是在\(mod\ x^{p+1}\)意义下,因为如果要最短,则必须取等(感觉有点奇怪,好像也构造不出更优的解)

Poly BM(Poly A){
	int N=A.size();
	Poly R,Rp;
	int Pa,Pap;
	R.clear();
	R.push_back(1);
	Poly Nex;
	Nex.clear();
	int P=-1;
	for(int i=0;i<N;i++)
	{
		Nex.push_back(A.U[i]);
		Pa=0;
		for(int j=0;j<R.U.size();j++)
		{
			Pa=((long long)Pa+((long long)Nex.U[(i)-j]*R.U[j])%MOD)%MOD;
		}
		if(Pa==0)
		{
			continue;
		}
		else
		{
			if(P==-1)
			{
				R.U.resize(i+2,0);
				R.U[0]=1;
				Rp.U.clear();
				Rp.U.push_back(1);
				Pap=Pa;
				P=i;
			}
			else
			{
				int IDSY=((long long)Pa*inv(Pap,MOD))%MOD;
				if(Rp.size()+i-P>R.size())
				{
					Poly WORNMDESBTIR;
					WORNMDESBTIR.clear();
					WORNMDESBTIR.U.resize(Rp.size()+i-P,0);
					for(int j=0;j<Rp.size();j++)
					{
						WORNMDESBTIR.U[j+i-P]=(MOD-((long long)Rp.U[j]*IDSY)%MOD);
					}
					for(int j=0;j<R.size();j++)
					{
						WORNMDESBTIR.U[j]=((long long)WORNMDESBTIR.U[j]+R.U[j])%MOD;
					}
					
					Rp=R;	
					Pap=Pa;
					P=i;
					R=WORNMDESBTIR;
				}
				else
				{
					for(int j=0;j<Rp.size();j++)
					{
						R.U[j+i-P]=((long long)R.U[j+i-P]-((long long)Rp.U[j]*IDSY)%MOD+MOD)%MOD;
					}
				}		
			}
			
		}
	}
	return R; 
}
posted @ 2023-01-27 11:42  kid_magic  阅读(76)  评论(0编辑  收藏  举报