二项式系数练习题目

二项式系数练习题目

\(\mathcal{No.}1\)

\(3^{5}\times2^{13}\times\binom{18}{5}\)

\(0(无此项)\)

\(\mathcal{No.}2\)

\(\because \sum_{k=0}^n\binom{n}{k}x^{n-k}y^{k}=(x+y)^n\)

\(令 x=1,y=2\)

\(\therefore \sum_{k=0}^n\binom{n}{k}2^{k}=3^n\)

\(令 x=1,y=r\)

\(\therefore \sum_{k=0}^n\binom{n}{k}r^{k}=(r+1)^n\)

\(\mathcal{No.}3\)

\(\because \sum_{k=0}^n\binom{n}{k}x^{n-k}y^{k}=(x+y)^n\)

\(令 x=-1,y=3\)

\(\therefore \sum_{k=0}^n\binom{n}{k}3^{n-k}(-1)^{k}=(2)^n\)

\(\mathcal{No.}4\)

\(\because \sum_{k=0}^n\binom{n}{k}x^{n-k}y^{k}=(x+y)^n\)

\(令 x=-1,y=10\)

\(\therefore \sum_{k=0}^n\binom{n}{k}10^{k}(-1)^{n-k}=9^n\)

\(\therefore \sum_{k=0}^n\binom{n}{k}10^{k}(-1)^{k}=9^n\times(-1)^n\)

\(\mathcal{No.}5\)

\(即证 \binom{n}{k}=\binom{n-1}{k-1}+\binom{n-2}{k-1}+\binom{n-3}{k-1}+\binom{n-3}{k}\)

\(\because \binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}\)

\(\therefore \binom{n}{k}=\binom{n-1}{k-1}+\binom{n-2}{k-1}+\binom{n-2}{k}\)

\(\therefore \binom{n}{k}=\binom{n-1}{k-1}+\binom{n-2}{k-1}+\binom{n-3}{k-1}+\binom{n-3}{k}\)

\(\therefore \binom{n}{k}-\binom{n-3}{k}=\binom{n-1}{k-1}+\binom{n-2}{k-1}+\binom{n-3}{k-1}\)

\(\mathcal{No.}6\)

\(若为奇数\)

\(易证\)

\(若为偶数\)

\(令2m=n\)

\(\because(x+1)^n(x-1)^n=(x^2-1)^n\)

\(\therefore \sum\limits_{k=0}^n\binom{n}{k}x^k\times\sum\limits_{k=0}^n(-1)^k\binom{n}{k}x^k=\sum\limits_{k=0}^n\binom{n}{k}(-1)^kx^{2k}\)

\(又\because 第n项系数一定\)

\(\therefore \sum\limits_{k=0}^n\binom{n}{k}\binom{n}{n-k}(-1)^kx^{k}x^{n-k}=\binom{2m}{m}x^n(-1)^m\)

\(\therefore x^n\sum\limits_{k=0}^n{\binom{n}{k}}^2(-1)^k=\binom{2m}{m}x^n(-1)^m\)

\(\therefore \sum\limits_{k=0}^n{\binom{n}{k}}^2(-1)^k=\binom{2m}{m}(-1)^m\)

\(\mathcal{No.}7\)

\(\large{\binom{n+3}{k}}\)

\(考虑组合意义,原式即为钦定3个为额外元素,实际上原式的4项分别为额外元素选0,1,2,3的方案数\)

\(\mathcal{No.}8\)

\(\binom{r}{k}=\binom{r}{r-k}=\dfrac{r}{r-k}\times\binom{r-1}{r-k-1}=\dfrac{r}{r-k}\times\binom{r-1}{k}(???r好像为实数。。。。)\)

\(\mathcal{No.}9\)

\(原式=\sum_{k=0}^n\dfrac{\binom{n}{k}}{k+1}\times(-1)^k=\sum_{k=0}^n\dfrac{\binom{n+1}{k+1}}{n+1}\times(-1)^k=\dfrac{1}{n+1}\sum_{k=0}^n\binom{n+1}{k+1}\times(-1)^k=\dfrac{1}{n+1}\sum_{k=1}^{n+1}\binom{n+1}{k}\times(-1)^{k+1}=\dfrac{1}{n+1}\)

\(\mathcal{No.}10\)

\(即证 \binom{n+1}{k+1}=\sum_{i=0}^n\binom{i}{k}\)

\(考虑组合意义,即在前i+1个球中,必选i+1个球的方案数之和,即在n+1个球中选k+1个球\)

\(\mathcal{No.}11\)

\(考虑问题为在m范围内选择(x,y,z)三元组\)

\(m^3=\binom{m}{3}\times6+\binom{m}{2}\times3\times2+\binom{m}{1}\)

\(\therefore a=6,b=6,c=1\)

\(\mathcal{No.}12\)

\(\sum\limits_{k=1}^n\binom{n}{k}\binom{n}{k-1}=\sum\limits_{k=1}^n\binom{n}{n-k}\binom{n}{k-1} \tag*{(1)}\)

\(\dfrac{1}{2}\binom{2n+2}{n+1}-\binom{2n}{n}=\dfrac{1}{2}\binom{2n+1}{n}\times\dfrac{2n+2}{n+1}-\binom{2n}{n}=\binom{2n+1}{n}-\binom{2n}{n}=\binom{2n}{n-1}\tag*{(2)}\)

\((1)式中相当于把2n个元素分成两组,然后一组由n-k个,一组k-1个,一共\binom{2n}{n-1},即(2)\)

\(\mathcal{No.}13\)

\(\sum\limits_{k=1}^nk{\binom{n}{k}}^2=\sum\limits_{k=1}^nk{\binom{n}{k}}\binom{n}{k}=n\sum\limits_{k=1}^n{\binom{n}{k}}\binom{n-1}{k-1}\)

\(即证\sum\limits_{k=1}^n{\binom{n}{n-k}}\binom{n-1}{k-1}=\binom{2n-1}{n-1}\tag*{(1)}\)

\((1)式中相当于把2n-1个元素分成两组,然后一组由n-k个,一组k-1个,一共\binom{2n-1}{n-1},即为等式\)

posted @ 2021-11-15 16:52  kid_magic  阅读(288)  评论(0编辑  收藏  举报