R-正态性检验实例
数据
price.csv文件(一列价格差值的数据,包含标题)
问题描述
- 利用price.csv数据绘制数据直方图,并添加概率密度曲线(density)和估计概率密度曲线(dnorm) 。
- 绘制出qqplot及其拟合线。
- 用Shapiro和Kolmogorov-Smirnov检验判断该数据是否符合正态分布。
代码实现
1 2 3 4 5 6 7 8 9 10 11 12 | data = read.csv ( "price.csv" , header = T) hist (data$diff, freq = F, xlab = 'Price differences' , ylab = 'Density' ) #绘制直方图 lines ( density (data$diff), col = 'black' ) #添加概率密度曲线 x = seq (-2, 2, len = 252) lines (x, dnorm (x, mean (data$diff), sd (data$diff)), col= 'blue' ) #添加估计概率密度曲线 qqnorm (data$diff) #绘制qqplot qqline (data$diff) #绘制拟合线 shapiro.test (data$diff) ks.test (data$diff, 'pnorm' , mean = mean (data$diff), sd = sd (data$diff)) |
结果展示
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | > shapiro.test (data$diff) Shapiro-Wilk normality test data: data$diff W = 0.99146, p-value = 0.1503 > ks.test (data$diff, 'pnorm' , mean = mean (data$diff), sd = sd (data$diff)) One-sample Kolmogorov-Smirnov test data: data$diff D = 0.052668, p-value = 0.4867 alternative hypothesis: two-sided |
两种检验均表明该数据服从正态分布。
本文作者:Khru
本文链接:https://www.cnblogs.com/khrushchefox/p/16127272.html
版权声明:本作品采用知识共享署名-非商业性使用-禁止演绎 2.5 中国大陆许可协议进行许可。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步