Welcome to my blog.|

Khru

园龄:2年11个月粉丝:22关注:1

📂R
2022-04-10 20:02阅读: 156评论: 0推荐: 0

R-正态性检验实例

数据

price.csv文件(一列价格差值的数据,包含标题)

问题描述

  • 利用price.csv数据绘制数据直方图,并添加概率密度曲线(density)和估计概率密度曲线(dnorm) 。
  • 绘制出qqplot及其拟合线。
  • 用Shapiro和Kolmogorov-Smirnov检验判断该数据是否符合正态分布。

代码实现

1
2
3
4
5
6
7
8
9
10
11
12
data = read.csv("price.csv", header = T)
hist(data$diff, freq = F, xlab = 'Price differences', ylab = 'Density'#绘制直方图
lines(density(data$diff), col = 'black'#添加概率密度曲线
x = seq(-2, 2, len = 252)
lines(x, dnorm(x, mean(data$diff), sd(data$diff)), col= 'blue'#添加估计概率密度曲线
 
qqnorm(data$diff)  #绘制qqplot
qqline(data$diff)  #绘制拟合线
 
shapiro.test(data$diff)
 
ks.test(data$diff, 'pnorm', mean = mean(data$diff), sd = sd(data$diff))

结果展示

1
2
3
4
5
6
7
8
9
10
11
12
13
14
> shapiro.test(data$diff)
 
    Shapiro-Wilk normality test
 
data:  data$diff
W = 0.99146, p-value = 0.1503
 
> ks.test(data$diff, 'pnorm', mean = mean(data$diff), sd = sd(data$diff))
 
    One-sample Kolmogorov-Smirnov test
 
data:  data$diff
D = 0.052668, p-value = 0.4867
alternative hypothesis: two-sided

  两种检验均表明该数据服从正态分布。

 

本文作者:Khru

本文链接:https://www.cnblogs.com/khrushchefox/p/16127272.html

版权声明:本作品采用知识共享署名-非商业性使用-禁止演绎 2.5 中国大陆许可协议进行许可。

posted @   Khru  阅读(156)  评论(0编辑  收藏  举报
点击右上角即可分享
微信分享提示
评论
收藏
关注
推荐
深色
回顶
收起