fit_transform和transform的区别
1. fit_transform是fit和transform的组合。
2. fit(x,y)传两个参数的是有监督学习的算法,fit(x)传一个参数的是无监督学习的算法,比如降维、特征提取、标准化。
3. fit和transform没有任何关系,之所以出来这么个函数名,仅仅是为了写代码方便,所以会发现transform()和fit_transform()的运行结果是一样的。
注意:运行结果一模一样不代表这两个函数可以互相替换,绝对不可以!transform函数是一定可以替换为fit_transform函数的,fit_transform函数不能替换为transform函数!
4.
# 从sklearn.preprocessing导入StandardScaler from sklearn.preprocessing import StandardScaler # 标准化数据,保证每个维度的特征数据方差为1,均值为0,使得预测结果不会被某些维度过大的特征值而主导 ss = StandardScaler() # fit_transform()先拟合数据,再标准化 X_train = ss.fit_transform(X_train) # transform()数据标准化 X_test = ss.transform(X_test)
两个函数的API以及参数含义:
1. fit_transform()函数
即fit_transform()的作用就是先拟合数据,然后转化它将其转化为标准形式。
2. transform()函数
即tranform()的作用是通过找中心和缩放等实现标准化。
到了这里,我们似乎知道了两者的一些差别,就像名字上的不同,前者多了一个fit数据的步骤,那为什么在标准化数据的时候不适用fit_transform()函数呢?
原因如下:
为了数据归一化(使特征数据方差为1,均值为0),我们需要计算特征数据的均值μ和方差σ^2,再使用下面的公式进行归一化:
我们在训练集上调用fit_transform(),其实找到了均值μ和方差σ^2,即我们已经找到了转换规则,我们把这个规则利用在训练集上,同样,我们可以直接将其运用到测试集上(甚至交叉验证集),所以在测试集上的处理,我们只需要标准化数据而不需要再次拟合数据。用一幅图展示如下:
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 分享4款.NET开源、免费、实用的商城系统
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了