sklearn 简单线性回归

 

简单线性回归

线性回归的思想其实就是解一组方程,得到回归函数,不过在出现误差之后,方程的解法就存在改变,一般使用最小二乘法计算。

使用sklearn.liner_model.LinearRegression进行线性回归

sklearn对Data Mining的各类算法已经有了较好的封装,基本可以使用fitpredictscore来训练、预测、评价模型。一个简单的例子如下:

>>> from sklearn import linear_model
>>> clf = linear_model.LinearRegression()
>>> X = [[0. 0], [1, 1], [2, 2]]
>>> y = [0, 1, 2]
>>> clf.fit(X, y)
>>> print(clf.coef_)
[0.5 0.5]

>>> print(clf.intercept_)
1.11022302463e-16

LinearRegression已经实现了多元线性回归模型,当然,也可以用来计算一元线性模型.

使用方法 

实例化 

使用clf = LinearRegression()就可以完成,下面是可能会用到的参数:

  • fit_intercept:是否存在截距,默认存在
  • normalize:标准化开关,默认关闭

回归 

fit进行回归计算:

  • fit(X, y, sample_weight = None):X, y以矩阵的方式传入,而sample_weight则是每条测试数据的权重,同样以array格式传入。
  • predict(X):预测方法,将返回预测值y_pred
  • score(X, y, sample_weight = None):评价函数,将返回一个小于1的得分,可能会小于0

方程

LinearRegression将方程分为两个部分存放,coef_存放回归系数,intercept_则存放截距,因此要查看方程,就是查看这两个变量的取值。

多项式回归

其实,多项式就是多元回归的一个变种,只不过是原来需要传入的是X向量,而多项式则只要一个X值就行。通过将x扩展为指定阶数的向量,就可以使用LinearRegression进行回归了。sklearn已经提供了扩展的方法——sklearn.preprocessing.PolynomialFeatures。利用这个类可以轻松的将x扩展为X向量,如下:

>>> from sklearn.preprocessing import PolynomialFeatures
>>> X_train = [[1],[2],[3],[4]]
>>> quadratic_featurizer = PolynomialFeatures(degree=2)
>>> X_train_quadratic = quadratic_featurizer.fit_transform(X_train)
>>> print(X_train_quadratic)
[[ 1  1  1]
 [ 1  2  4]
 [ 1  3  9]
 [ 1  4 16]]

经过以上处理,就可以使用LinearRegression进行回归计算了。

 

来自:Magle

posted @ 2018-04-14 18:07  做梦当财神  阅读(330)  评论(0编辑  收藏  举报