sklearn.learning_curve
学习曲线函数:
from sklearn.learning_curve import learning_curve
调用格式:
learning_curve(estimator, X, y, train_sizes=array([0.1, 0.325, 0.55, 0.775, 1. ]), cv=None, scoring=None, exploit_incremental_learning=False, n_jobs=1, pre_dispatch='all', verbose=0)
# exploit 开发,开拓 incremental 增加的 dispatch 派遣,分派 verbose 冗长的
参数:
- estimator:分类器
- X:训练向量
- y:目标相对于X分类或者回归
- train_sizes:训练样本相对的或绝对的数字,这些量的样本将会生成learning curve。
- cv:确定交叉验证的分离策略(None:使用默认的3-fold cross-validation;integer:确定几折交叉验证)
- verbose:整型,可选择的。控制冗余:越高,有越多的信息。
返回值:
train_sizes_abs:生成learning curve的训练集的样本数。重复的输入会被删除。
train_scores:在训练集上的分数
test_scores:在测试集上的分数
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 无需6万激活码!GitHub神秘组织3小时极速复刻Manus,手把手教你使用OpenManus搭建本
· C#/.NET/.NET Core优秀项目和框架2025年2月简报
· Manus爆火,是硬核还是营销?
· 终于写完轮子一部分:tcp代理 了,记录一下
· 【杭电多校比赛记录】2025“钉耙编程”中国大学生算法设计春季联赛(1)