pandas删除缺失数据(pd.dropna()方法)

1.创建带有缺失值的数据库:

复制代码
import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randn(5, 3), index = list('abcde'), columns = ['one', 'two', 'three'])        # 随机产生5行3列的数据    
df.ix[1, :-1] = np.nan        # 将指定数据定义为缺失
df.ix[1:-1, 2] = np.nan

print('\ndf1')        # 输出df1,然后换行
print(df)        
复制代码

查看数据内容:

 

2.通常情况下删除行,使用参数axis = 0,删除列的参数axis = 1,通常不会这么做,那样会删除一个变量。

print('\ndrop row')
print(df.dropna(axis = 0))

 删除后结果:

posted @   做梦当财神  阅读(37414)  评论(0编辑  收藏  举报
编辑推荐:
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
阅读排行:
· 无需6万激活码!GitHub神秘组织3小时极速复刻Manus,手把手教你使用OpenManus搭建本
· C#/.NET/.NET Core优秀项目和框架2025年2月简报
· Manus爆火,是硬核还是营销?
· 终于写完轮子一部分:tcp代理 了,记录一下
· 【杭电多校比赛记录】2025“钉耙编程”中国大学生算法设计春季联赛(1)
点击右上角即可分享
微信分享提示