决策树算法简单总结

·来自:https://mp.weixin.qq.com/s/tevVm0jlS6vZ3LCnczWD0w

前言

李航老师《统计学习方法》详细的描述了决策树的生成和剪枝。根据书的内容,做总结如下。

 

目录

  1. 决策树不确定性的度量方法
  2. 决策树的特征筛选准则
  3. 决策函数的损失函数评估
  4. 决策树最优模型的构建步骤
  5. 决策树的优缺点分析

 

a. 决策树不确定性的度量方法

 

1. 不确定性理解

下图为事件A是否发生的概率分布,事件发生记为1,讨论事件A的不确定性。

 

(1)一种极端情况,若p=1或p=0,表示为事件A必定发生或事件A不可能发生。

(2)若p>1/2,即事件A发生的概率大于事件A不发生的概率,我们倾向于预测事件A是发生的;若 p<1/2,即事件A不发生的概率小于事件A发生的概率,我们倾向于预测事件A是不发生的;若 p=1/2,即事件A发生的概率等于事件A不发生的概率,我们无法作出预测。

 

2. 决策树不确定性的度量方法

这里用熵和基尼指数去衡量数据集的不确定性,假设数据集包含K类,每个类的大小和比例分别为Di和pi,i = 1,2,...,k。

(1)熵的不确定性度量方法

信息论和概率统计中,熵是表示随机变量不确定性的度量,令熵为H(p),则:

熵越大,数据集的不确定性就越大。

(2)基尼指数的不确定度量方法

数据集的基尼指数定义为:

基尼指数越大,数据集不确定性越大。

 

b. 决策树特征筛选准则

 

假设数据集A共有K个特征,记为xi,i = 1,2,...,K。数据集A的不确定性越大,则数据集A包含的信息越多。假设数据集A的信息为H(A),经过特征xi筛选后的信息为H(A|xi),定义信息增益g(A, xi)为两者的差值,即:

g(A, xi) = H(A) - H(A|xi)

选择使数据集A信息增益最大的特征作为决策树当前节点,数学表示为:

x = max( g(A,xi) ) = max( H(A) - H(A|xi) )

 

C. 决策树的损失函数评估

 

令决策树的叶节点数为T,损失函数为:

其中C(T)为决策树的训练误差,决策树模型用不确定性表示,不确定性越大,则训练误差亦越大。T表示决策树的复杂度惩罚α参数权衡训练数据的训练误差与模型复杂度的关系,意义相当于正则化参数。

考虑极端情况:当α趋于0的时候,最优决策树模型的训练误差接近 0,模型处于过拟合;当α趋于无穷大的时候,最优决策树模型是由根节点组成的单节点树。

 

d. 决策树最优模型的构建步骤

 

将数据集A通过一定的比例划分为训练集和测试集。

决策树的损失函数:

决策树最优模型的构建步骤包括训练阶段和测试阶段:

训练阶段:

(1)最小化决策树的不确定性值得到的生成模型,即决策树生成

(2)通过决策树剪枝,得到不同的正则化参数α下的最优决策树模型,即决策树剪枝

 下面重点讨论训练阶段的决策树生成步骤和决策树剪枝步骤。

决策树生成步骤:

(1) 根据决策树的特征筛选准则,选择数据集信息增益最大的特征;

(2) 重复第一个步骤,直到所有叶节点的不确定性为0 。

决策树剪枝步骤:

(1)将正则化参数α从小到大分成不同的区间

 

 

e. 决策树优缺点

优点:模型很强的解释性

缺点:容易过拟合。即训练误差很小,测试误差很大。为避免过拟合,使用时结合集成算法。如:bagging算法、boosting算法。

 

posted @ 2019-01-06 16:29  做梦当财神  阅读(1856)  评论(0编辑  收藏  举报