kNN
import numpy as np import operator import matplotlib import matplotlib.pyplot as plt import os def createDataSet(): group = np.array([[1.0, 1.1], [1.0, 1.0], [0, 0], [0, 0.1]]) labels = ['A', 'A', 'B', 'B'] return group, labels def classify0(inX, dataSet, labels, k): # kNN算法简单流程 dataSetSize = dataSet.shape[0] diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet sqDiffMat = diffMat**2 sqDistances = sqDiffMat.sum(axis=1) distances = sqDistances**0.5 sortedDistIndicies = distances.argsort() classCount = {} for i in range(k): voteIlabel = labels[sortedDistIndicies[i]] classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1 sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True) return sortedClassCount[0][0] def file2matrix(filename): # 将txt文件转化为需要的数据格式 fr = open(filename) arrayOLines = fr.readlines() numberOfLines = len(arrayOLines) returnMat = np.zeros((numberOfLines, 3)) classLabelVectors = [] index = 0 for line in arrayOLines: line = line.strip() listFromLine = line.split('\t') returnMat[index, :] = listFromLine[0:3] classLabelVectors.append(int(listFromLine[-1])) index += 1 return returnMat, classLabelVectors """ data, labels = file2matrix("datingTestSet.txt") # print(data) fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(data[:, 0], data[:, 1], 15*np.array(labels), 15*np.array(labels)) plt.show() """ def autoNorm(dataSet): """ 归一化特征值 :param dataSet: 训练集数据 :return: """ minVals = dataSet.min(0) maxVals = dataSet.max(0) ranges = maxVals - minVals normDataSet = np.zeros(np.shape(dataSet)) m = dataSet.shape[0] normDataSet = dataSet - np.tile(minVals, (m, 1)) normDataSet = normDataSet / np.tile(ranges, (m, 1)) return normDataSet, ranges, minVals def datingClassTest(): """ 测试分类效果,即the error rate """ hoRatio = 0.1 datingDataMat, datingLabels = file2matrix('datingTestSet2.txt') normMat, ranges, minVals = autoNorm(datingDataMat) m = normMat.shape[0] numTestVecs = int(m*hoRatio) errorCount = 0.0 for i in range(numTestVecs): classifierResult = classify0(normMat[i, :], normMat[numTestVecs:m, :], datingLabels[numTestVecs:m], 3) print("the classifier came back with: %d, the real answer is: %d" % (classifierResult, datingLabels[i])) if classifierResult != datingLabels[i]: errorCount += 1.0 print("the total error rate is: %f" % (errorCount/float(numTestVecs))) def classifyPerson(): """ 构建完整可用系统,即约会网站预测函数 """ resultList = ['not at all', 'in small doses', 'in large doses'] percentTats = float(input("percentage of time spent playing video games? ")) ffMiles = float(input("frequent flier miles earned per year? ")) iceCream = float(input("liters of ice cream consumed per year? ")) datingDataMat, datingLabels = file2matrix('datingTestSet2.txt') normMat, ranges, minVals = autoNorm(datingDataMat) inArr = np.array([ffMiles, percentTats, iceCream]) classifierResult = classify0((inArr-minVals)/ranges, normMat, datingLabels, 3) print("You will probably like this person:", resultList[classifierResult - 1]) def img2vector(filename): """ 手写识别将图像转换为测试向量 :param filename: :return: """ returnVect = np.zeros((1, 1024)) fr = open(filename) for i in range(32): lineStr = fr.readline() for j in range(32): returnVect[0, 32*i+j] = int(lineStr[j]) return returnVect testVector = img2vector('digits/testDigits/0_13.txt') def handwritingClassTest(): """ 手写数字识别系统的测试代码 """ hwLabels = [] trainingFileList = os.listdir('digits/trainingDigits') m = len(trainingFileList) trainingMat = np.zeros((m, 1024)) for i in range(m): fileNameStr = trainingFileList[i] fileStr = fileNameStr.split('.')[0] classNumStr = int(fileStr.split('_')[0]) hwLabels.append(classNumStr) trainingMat[i, :] = img2vector('digits/trainingDigits/%s' % fileNameStr) testFileList = os.listdir('digits/testDigits') errorCount = 0.0 mTest = len(testFileList) for i in range(mTest): fileNameStr = testFileList[i] fileStr = fileNameStr.split('.')[0] classNumStr = int(fileNameStr.split('_')[0]) vectorUnderTest = img2vector('digits/testDigits/%s' % fileNameStr) classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3) print("the classifier came back with: %d, the real answer is: %d" % (classifierResult, classNumStr)) if classifierResult != classNumStr: errorCount += 1.0 print("\nthe total number of errors is: %d" % errorCount) print("\nthe total error rate is: %f" % (errorCount/float(mTest))) handwritingClassTest()