汇编总结
CLD Clear the direction flag (set to forward direction)
将方向标志置0,使si和di增量,串处理从低地址向高地址处理
8088 汇编速查手册
一、数据传输指令
───────────────────────────────────────
它们在存贮器和寄存器、寄存器和输入输出端口之间传送数据.
1. 通用数据传送指令.
MOV 传送字或字节.
MOVSX 先符号扩展,再传送.
MOVZX 先零扩展,再传送.
PUSH 把字压入堆栈.
POP 把字弹出堆栈.
PUSHA 把AX,CX,DX,BX,SP,BP,SI,DI依次压入堆栈.
POPA 把DI,SI,BP,SP,BX,DX,CX,AX依次弹出堆栈.
PUSHAD 把EAX,ECX,EDX, EBX,ESP,EBP,ESI,EDI依次压入堆栈.
POPAD 把EDI,ESI,EBP,ESP,EBX,EDX, ECX,EAX依次弹出堆栈.
BSWAP 交换32位寄存器里字节的顺序
XCHG 交换字或字节.( 至少有一个操作数为寄存器,段寄存器不可作为操作数)
CMPXCHG 比较并交换操作数.( 第二个操作数必须为累加器AL/AX/EAX )
XADD 先交换再累加.( 结果在第一个操作数里 )
XLAT 字节查表转换.
── BX 指向一张 256 字节的表的起点, AL 为表的索引值 (0-255,即
0-FFH); 返回 AL 为查表结果. ( [BX+AL]->AL )
2. 输入输出端口传送指令.
IN I/O端口输入. ( 语法: IN 累加器, {端口号│DX} )
OUT I/O端口输出. ( 语法: OUT {端口号│DX},累加器 )
输入输出端口由立即方式指定时, 其范围是 0-255; 由寄存器 DX 指定时,
其范围是 0-65535.
3. 目的地址传送指令.
LEA 装入有效地址.
例: LEA DX,string ;把偏移地址存到DX.
LDS 传送目标指针,把指针内容装入DS.
例: LDS SI,string ;把段地址:偏移地址存到DS:SI.
LES 传送目标指针,把指针内容装入ES.
例: LES DI,string ;把段地址:偏移地址存到ES:DI.
LFS 传送目标指针,把指针内容装入FS.
例: LFS DI,string ;把段地址:偏移地址存到FS:DI.
LGS 传送目标指针,把指针内容装入GS.
例: LGS DI,string ;把段地址:偏移地址存到GS:DI.
LSS 传送目标指针,把指针内容装入SS.
例: LSS DI,string ;把段地址:偏移地址存到SS:DI.
4. 标志传送指令.
LAHF 标志寄存器传送,把标志装入AH.
SAHF 标志寄存器传送,把 AH内容装入标志寄存器.
PUSHF 标志入栈.
POPF 标志出栈.
PUSHD 32位标志入栈.
POPD 32位标志出栈.
二、算术运算指令
───────────────────────────────────────
ADD 加法.
ADC 带进位加法.
INC 加 1.
AAA 加法的ASCII码调整.
DAA 加法的十进制调整.
SUB 减法.
SBB 带借位减法.
DEC 减 1.
NEC 求反(以 0 减之).
CMP 比较.(两操作数作减法,仅修改标志位,不回送结果).
AAS 减法的 ASCII码调整.
DAS 减法的十进制调整.
MUL 无符号乘法.
IMUL 整数乘法.
以上两条,结果回送AH和AL(字节运算),或DX和AX(字运算),
AAM 乘法的ASCII码调整.
DIV 无符号除法.
IDIV 整数除法.
以上两条,结果回送:
商回送AL,余数回送AH, (字节运算);
或 商回送AX,余数回送DX, (字运算).
AAD 除法的ASCII码调整.
CBW 字节转换为字. (把AL中字节的符号扩展到AH中去)
CWD 字转换为双字. (把AX中的字的符号扩展到DX中去)
CWDE 字转换为双字. (把AX中的字符号扩展到EAX中去)
CDQ 双字扩展. (把EAX中的字的符号扩展到EDX中去)
三、逻辑运算指令
───────────────────────────────────────
AND 与运算.
OR 或运算.
XOR 异或运算.
NOT 取反.
TEST 测试.(两操作数作与运算,仅修改标志位,不回送结果).
SHL 逻辑左移.
SAL 算术左移.(=SHL)
SHR 逻辑右移.
SAR 算术右移.(=SHR)
ROL 循环左移.
ROR 循环右移.
RCL 通过进位的循环左移.
RCR 通过进位的循环右移.
以上八种移位指令,其移位次数可达255次.
移位一次时, 可直接用操作码. 如 SHL AX,1.
移位>1次时, 则由寄存器CL给出移位次数.
如 MOV CL,04
SHL AX,CL
四、串指令
───────────────────────────────────────
DS:SI 源串段寄存器 :源串变址.
ES:DI 目标串段寄存器:目标串变址.
CX 重复次数计数器.
AL/AX 扫描值.
D标志 0表示重复操作中SI和DI应自动增量; 1表示应自动减量.
Z标志 用来控制扫描或比较操作的结束.
MOVS 串传送.
( MOVSB 传送字符. MOVSW 传送字. MOVSD 传送双字. )
CMPS 串比较.
( CMPSB 比较字符. CMPSW 比较字. )
SCAS 串扫描.
把AL或AX的内容与目标串作比较,比较结果反映在标志位.
LODS 装入串.
把源串中的元素(字或字节)逐一装入AL或AX中.
( LODSB 传送字符. LODSW 传送字. LODSD 传送双字. )
STOS 保存串.
是LODS的逆过程.
REP 当CX/ECX<>0时重复.
REPE/REPZ 当ZF=1或比较结果相等,且 CX/ECX<>0时重复.
REPNE/REPNZ 当ZF=0或比较结果不相等,且 CX/ECX<>0时重复.
REPC 当CF=1且CX/ECX< >0时重复.
REPNC 当CF=0且CX/ECX<>0时重复.
五、程序转移指令
───────────────────────────────────────
1>无条件转移指令 (长转移)
JMP 无条件转移指令
CALL 过程调用
RET/RETF过程返回.
2>条件转移指令 (短转移,-128到+127的距离内)
( 当且仅当(SF XOR OF)=1时,OP1<OP2 )
JA/JNBE 不小于或不等于时转移.
JAE/JNB 大于或等于转移.
JB/JNAE 小于转移.
JBE/JNA 小于或等于转移.
以上四条,测试无符号整数运算的结果(标志C和Z).
JG/JNLE 大于转移.
JGE/JNL 大于或等于转移.
JL/JNGE 小于转移.
JLE/JNG 小于或等于转移.
以上四条,测试带符号整数运算的结果(标志S,O和Z).
JE/JZ 等于转移.
JNE/JNZ 不等于时转移.
JC 有进位时转移.
JNC 无进位时转移.
JNO 不溢出时转移.
JNP/JPO 奇偶性为奇数时转移.
JNS 符号位为 "0" 时转移.
JO 溢出转移.
JP/JPE 奇偶性为偶数时转移.
JS 符号位为 "1" 时转移.
3>循环控制指令(短转移)
LOOP CX不为零时循环.
LOOPE/LOOPZ CX不为零且标志Z=1时循环.
LOOPNE/LOOPNZ CX 不为零且标志Z=0时循环.
JCXZ CX为零时转移.
JECXZ ECX 为零时转移.
4>中断指令
INT 中断指令
INTO 溢出中断
IRET 中断返回
5>处理器控制指令
HLT 处理器暂停, 直到出现中断或复位信号才继续.
WAIT 当芯片引线TEST为高电平时使CPU进入等待状态.
ESC 转换到外处理器.
LOCK 封锁总线.
NOP 空操作.
STC 置进位标志位.
CLC 清进位标志位.
CMC 进位标志取反.
STD 置方向标志位.
CLD 清方向标志位.
STI 置中断允许位.
CLI 清中断允许位.
六、伪指令
───────────────────────────────────────
DW 定义字(2字节).
PROC 定义过程.
ENDP 过程结束.
SEGMENT 定义段.
ASSUME 建立段寄存器寻址.
ENDS 段结束.
END 程序结束.
Linux 汇编语言开发指南 | ||||
肖文鹏(xiaowp@263.net) 汇编语言的优点是速度快,可以直接对硬件进行操作,这对诸如图形处理等关键应用是非常重要的。Linux 是一个用 C 语言开发的操作系统,这使得很多程序员开始忘记在 Linux 中还可以直接使用汇编这一底层语言来优化程序的性能。本文为那些在Linux 平台上编写汇编代码的程序员提供指南,介绍 Linux 汇编语言的语法格式和开发工具,并辅以具体的例子讲述如何开发实用的Linux 汇编程序。 作为最基本的编程语言之一,汇编语言虽然应用的范围不算很广,但重要性却勿庸置疑,因为它能够完成许多其它语言所无法完成的功能。就拿 Linux 内核来讲,虽然绝大部分代码是用 C 语言编写的,但仍然不可避免地在某些关键地方使用了汇编代码,其中主要是在 Linux 的启动部分。由于这部分代码与硬件的关系非常密切,即使是 C 语言也会有些力不从心,而汇编语言则能够很好扬长避短,最大限度地发挥硬件的性能。 大 多数情况下 Linux 程序员不需要使用汇编语言,因为即便是硬件驱动这样的底层程序在 Linux 操作系统中也可以用完全用 C 语言来实现,再加上 GCC 这一优秀的编译器目前已经能够对最终生成的代码进行很好的优化,的确有足够的理由让我们可以暂时将汇编语言抛在一边了。但实现情况是 Linux 程序员有时还是需要使用汇编,或者不得不使用汇编,理由很简单:精简、高效和 libc 无关性。假设要移植 Linux 到某一特定的嵌入式硬件环境下,首先必然面临如何减少系统大小、提高执行效率等问题,此时或许只有汇编语言能帮上忙了。 汇编语言直接同计算机的底层软件甚至硬件进行交互,它具有如下一些优点:
同时还应该认识到,汇编语言是一种层次非常低的语言,它仅仅高于直接手工编写二进制的机器指令码,因此不可避免地存在一些缺点:
Linux 下用汇编语言编写的代码具有两种不同的形式。第一种是完全的汇编代码,指的是整个程序全部用汇编语言编写。尽管是完全的汇编代码,Linux 平台下的汇编工具也吸收了 C 语言的长处,使得程序员可以使用 #include、#ifdef 等预处理指令,并能够通过宏定义来简化代码。第二种是内嵌的汇编代码,指的是可以嵌入到C语言程序中的汇编代码片段。虽然 ANSI 的 C 语言标准中没有关于内嵌汇编代码的相应规定,但各种实际使用的 C 编译器都做了这方面的扩充,这其中当然就包括 Linux 平台下的 GCC。 绝大多数 Linux 程序员以前只接触过DOS/Windows 下的汇编语言,这些汇编代码都是 Intel 风格的。但在 Unix 和 Linux 系统中,更多采用的还是 ATAT&Tamp;T 格式,两者在语法格式上有着很大的不同:
真不知道打破这个传统会带来什么样的后果,但既然所有程序设计语言的第一个例子都是在屏幕上打印一个字符串 "Hello World!",那我们也以这种方式来开始介绍 Linux 下的汇编语言程序设计。 在 Linux 操作系统中,你有很多办法可以实现在屏幕上显示一个字符串,但最简洁的方式是使用 Linux 内核提供的系统调用。使用这种方法最大的好处是可以直接和操作系统的内核进行通讯,不需要链接诸如 libc 这样的函数库,也不需要使用 ELF 解释器,因而代码尺寸小且执行速度快。 Linux 是一个运行在保护模式下的 32 位操作系统,采用 flat memory 模式,目前最常用到的是 ELF 格式的二进制代码。一个 ELF 格式的可执行程序通常划分为如下几个部分:.text、.data 和 .bss,其中 .text 是只读的代码区,.data 是可读可写的数据区,而 .bss 则是可读可写且没有初始化的数据区。代码区和数据区在 ELF 中统称为 section,根据实际需要你可以使用其它标准的 section,也可以添加自定义 section,但一个 ELF 可执行程序至少应该有一个 .text 部分。下面给出我们的第一个汇编程序,用的是 ATAT&Tamp;T 汇编语言格式: 例1. ATAT&Tamp;T 格式
初次接触到 ATAT&Tamp;T 格式的汇编代码时,很多程序员都认为太晦涩难懂了,没有关系,在 Linux 平台上你同样可以使用 Intel 格式来编写汇编程序: 例2. Intel 格式
上 面两个汇编程序采用的语法虽然完全不同,但功能却都是调用 Linux 内核提供的 sys_write 来显示一个字符串,然后再调用 sys_exit 退出程序。在 Linux 内核源文件 include/asm-i386/unistd.h 中,可以找到所有系统调用的定义。 Linux 平台下的汇编工具虽然种类很多,但同 DOS/Windows 一样,最基本的仍然是汇编器、连接器和调试器。 1.汇编器 汇编器(assembler)的作用是将用汇编语言编写的源程序转换成二进制形式的目标代码。Linux 平台的标准汇编器是 GAS,它是 GCC 所依赖的后台汇编工具,通常包含在 binutils 软件包中。GAS 使用标准的 ATAT&Tamp;T 汇编语法,可以用来汇编用 ATAT&Tamp;T 格式编写的程序:
Linux 平台上另一个经常用到的汇编器是 NASM,它提供了很好的宏指令功能,并能够支持相当多的目标代码格式,包括 bin、a.out、coff、elf、rdf 等。NASM 采用的是人工编写的语法分析器,因而执行速度要比 GAS 快很多,更重要的是它使用的是 Intel 汇编语法,可以用来编译用 Intel 语法格式编写的汇编程序:
2.链接器 由汇编器产生的目标代码是不能直接在计算机上运行的,它必须经过链接器的处理才能生成可执行代码。链接器通常用来将多个目标代码连接成一个可执行代码,这样可以先将整个程序分成几个模块来单独开发,然后才将它们组合(链接)成一个应用程序。 Linux 使用 ld 作为标准的链接程序,它同样也包含在 binutils 软件包中。汇编程序在成功通过 GAS 或 NASM 的编译并生成目标代码后,就可以使用 ld 将其链接成可执行程序了:
3.调试器 有人说程序不是编出来而是调出来的,足见调试在软件开发中的重要作用,在用汇编语言编写程序时尤其如此。Linux 下调试汇编代码既可以用 GDB、DDD 这类通用的调试器,也可以使用专门用来调试汇编代码的 ALD(Assembly Language Debugger)。 从调试的角度来看,使用 GAS 的好处是可以在生成的目标代码中包含符号表(symbol table),这样就可以使用 GDB 和 DDD 来进行源码级的调试了。要在生成的可执行程序中包含符号表,可以采用下面的方式进行编译和链接:
执行 as 命令时带上参数 --gstabs 可以告诉汇编器在生成的目标代码中加上符号表,同时需要注意的是,在用 ld 命令进行链接时不要加上 -s 参数,否则目标代码中的符号表在链接时将被删去。 在 GDB 和 DDD 中调试汇编代码和调试 C 语言代码是一样的,你可以通过设置断点来中断程序的运行,查看变量和寄存器的当前值,并可以对代码进行单步跟踪。图1 是在 DDD 中调试汇编代码时的情景:
汇编程序员通常面对的都是一些比较苛刻的软硬件环境,短小精悍的ALD可能更能符合实际的需要,因此下面主要介绍一下如何用ALD来调试汇编程序。首先在命令行方式下执行ald命令来启动调试器,该命令的参数是将要被调试的可执行程序:
当 ALD 的提示符出现之后,用 disassemble 命令对代码段进行反汇编:
上述输出信息的第一列是指令对应的地址码,利用它可以设置在程序执行时的断点:
断点设置好后,使用 run 命令开始执行程序。ALD 在遇到断点时将自动暂停程序的运行,同时会显示所有寄存器的当前值:
如果需要对汇编代码进行单步调试,可以使用 next 命令:
若想获得 ALD 支持的所有调试命令的详细列表,可以使用 help 命令:
即便是最简单的汇编程序,也难免要用到诸如输入、输出以及退出等操作,而要进行这些操作则需要调用操作系统所提供的服务,也就是系统调用。除非你的程序只完成加减乘除等数学运算,否则将很难避免使用系统调用,事实上除了系统调用不同之外,各种操作系统的汇编编程往往都是很类似的。 在 Linux 平台下有两种方式来使用系统调用:利用封装后的 C 库(libc)或者通过汇编直接调用。其中通过汇编语言来直接调用系统调用,是最高效地使用 Linux 内核服务的方法,因为最终生成的程序不需要与任何库进行链接,而是直接和内核通信。 和 DOS 一样,Linux 下的系统调用也是通过中断(int 0x80)来实现的。在执行 int 80 指令时,寄存器 eax 中存放的是系统调用的功能号,而传给系统调用的参数则必须按顺序放到寄存器 ebx,ecx,edx,esi,edi 中,当系统调用完成之后,返回值可以在寄存器 eax 中获得。 所有的系统调用功能号都可以在文件 /usr/include/bits/syscall.h 中找到,为了便于使用,它们是用 SYS_
该 函数的功能最终是通过 SYS_write 这一系统调用来实现的。根据上面的约定,参数 fb、buf 和 count 分别存在寄存器 ebx、ecx 和 edx 中,而系统调用号 SYS_write 则放在寄存器 eax 中,当 int 0x80 指令执行完毕后,返回值可以从寄存器 eax 中获得。 或许你已经发现,在进行系统调用时至多只有 5 个寄存器能够用来保存参数,难道所有系统调用的参数个数都不超过 5 吗?当然不是,例如 mmap 函数就有 6 个参数,这些参数最后都需要传递给系统调用 SYS_mmap:
当一个系统调用所需的参数个数大于 5 时,执行int 0x80 指令时仍需将系统调用功能号保存在寄存器 eax 中,所不同的只是全部参数应该依次放在一块连续的内存区域里,同时在寄存器 ebx 中保存指向该内存区域的指针。系统调用完成之后,返回值仍将保存在寄存器 eax 中。 由于只是需要一块连续的内存区域来保存系统调用的参数,因此完全可以像普通的函数调用一样使用栈(stack)来传递系统调用所需的参数。但要注意一点,Linux 采用的是 C 语言的调用模式,这就意味着所有参数必须以相反的顺序进栈,即最后一个参数先入栈,而第一个参数则最后入栈。如果采用栈来传递系统调用所需的参数,在执行 int 0x80 指令时还应该将栈指针的当前值复制到寄存器 ebx中。 在 Linux 操作系统中,当一个可执行程序通过命令行启动时,其所需的参数将被保存到栈中:首先是 argc,然后是指向各个命令行参数的指针数组 argv,最后是指向环境变量的指针数据 envp。在编写汇编语言程序时,很多时候需要对这些参数进行处理,下面的代码示范了如何在汇编代码中进行命令行参数的处理: 例3. 处理命令行参数
用汇编编写的程序虽然运行速度快,但开发速度非常慢,效率也很低。如果只是想对关键代码段进行优化,或许更好的办法是将汇编指令嵌入到 C 语言程序中,从而充分利用高级语言和汇编语言各自的特点。但一般来讲,在 C 代码中嵌入汇编语句要比"纯粹"的汇编语言代码复杂得多,因为需要解决如何分配寄存器,以及如何与C代码中的变量相结合等问题。 GCC 提供了很好的内联汇编支持,最基本的格式是:
例如:
如果需要同时执行多条汇编语句,则应该用"\\n\\t"将各个语句分隔开,例如:
通常嵌入到 C 代码中的汇编语句很难做到与其它部分没有任何关系,因此更多时候需要用到完整的内联汇编格式:
插入到 C 代码中的汇编语句是以":"分隔的四个部分,其中第一部分就是汇编代码本身,通常称为指令部,其格式和在汇编语言中使用的格式基本相同。指令部分是必须的,而其它部分则可以根据实际情况而省略。 在将汇编语句嵌入到C代码中时,操作数如何与C代码中的变量相结合是个很大的问题。GCC采用如下方法来解决这个问题:程序员提供具体的指令,而对寄存器的使用则只需给出"样板"和约束条件就可以了,具体如何将寄存器与变量结合起来完全由GCC和GAS来负责。 在GCC内联汇编语句的指令部中,加上前缀'%'的数字(如%0,%1)表示的就是需要使用寄存器的"样板"操作数。指令部中使用了几个样板操作数,就表明有几个变量需要与寄存器相结合,这样GCC和GAS在编译和汇编时会根据后面给定的约束条件进行恰当的处理。由于样板操作数也使用'%'作为前缀,因此在涉及到具体的寄存器时,寄存器名前面应该加上两个'%',以免产生混淆。 紧跟在指令部后面的是输出部,是规定输出变量如何与样板操作数进行结合的条件,每个条件称为一个"约束",必要时可以包含多个约束,相互之间用逗号分隔开就可以了。每个输出约束都以'='号开始,然后紧跟一个对操作数类型进行说明的字后,最后是如何与变量相结合的约束。凡是与输出部中说明的操作数相结合的寄存器或操作数本身,在执行完嵌入的汇编代码后均不保留执行之前的内容,这是GCC在调度寄存器时所使用的依据。 输出部后面是输入部,输入约束的格式和输出约束相似,但不带'='号。如果一个输入约束要求使用寄存器,则GCC在预处理时就会为之分配一个寄存器,并插入必要的指令将操作数装入该寄存器。与输入部中说明的操作数结合的寄存器或操作数本身,在执行完嵌入的汇编代码后也不保留执行之前的内容。 有时在进行某些操作时,除了要用到进行数据输入和输出的寄存器外,还要使用多个寄存器来保存中间计算结果,这样就难免会破坏原有寄存器的内容。在GCC内联汇编格式中的最后一个部分中,可以对将产生副作用的寄存器进行说明,以便GCC能够采用相应的措施。 下面是一个内联汇编的简单例子: 例4.内联汇编
上面的程序完成将变量a的值赋予变量b,有几点需要说明:
在内联汇编中用到的操作数从输出部的第一个约束开始编号,序号从0开始,每个约束记数一次,指令部要引用这些操作数时,只需在序号前加上'%'作为前缀就可以了。需要注意的是,内联汇编语句的指令部在引用一个操作数时总是将其作为32位的长字使用,但实际情况可能需要的是字或字节,因此应该在约束中指明正确的限定符:
Linux操作系统是用C语言编写的,汇编只在必要的时候才被人们想到,但它却是减少代码尺寸和优化代码性能的一种非常重要的手段,特别是在与硬件直接交互的时候,汇编可以说是最佳的选择。Linux提供了非常优秀的工具来支持汇编程序的开发,使用GCC的内联 汇编能够充分地发挥C语言和汇编语言各自的优点。
|
ATAT&Tamp;T x86 asm 语法 | |
http://www.chinaunix.net 作者:e4gle 发表于:2002-11-12 15:06:51 | |
|
微机原理与汇编语言基础
C语言能实现汇编语言的大部分功能,能进行位运算,可以直接对硬件进行操作,例如可以允许直接访问内存或端口的物理地址。因此,学习C语言的人掌握一定的汇编语言基础是必要的。
一、80x86系列CPU的编程结构
寄存器在汇编语言中的地位类似于变量。寄存器变量的访问时间远小于内存变量的访问时间。在汇编语言中大量的使用寄存器而不是直接访问内存。
1 寄存器堆
8086CPU是Intel系列的16位微处理器,有16根数据线和20根地址线,直接寻址空间为2^20即1MB。8088CPU的对外数据总线为8位,称为准16位微处理器。
8086/8088的内部寄存器(register)共有14个,如下:
(1)通用寄存器:8个,包括数据寄存器、地址指针寄存器、变址寄存器。
数据寄存器4个:AX BX CX DX,它们又可作为8个8位的寄存器使用,即AH BH CH DH AL BL CL DL
AX称为累加器,I/O指令均使用该寄存器,访问外部硬件和接口。
BX称为基址寄存器,在访问内存时用于存放基地址。
CX称为计数寄存器,用于循环、字符串的循环控制。
DX称为数据寄存器,在寄存器间接寻址的i/o指令中存放i/o地址,在作双字运算时[DX][AX]构成一个双字。
地址指针寄存器2个:SP BP
SP称为堆栈指针寄存器,BP称为基址指针寄存器,在作数组和字符串运算时,用于存放内存的偏移地址。
变址寄存器2个:SI DI
SI称为源变址寄存器,DI称为目的变址寄存器,用于数据块操作的内存寻址。
(2)段寄存器4个:CS DS ES SS
CS代码段寄存器,DS数据段寄存器,ES附加段寄存器,SS堆栈段寄存器
用于存放段地址(段基址)
(3)指令指针IP:始终指向将要执行的指令。用户不能直接访问和编程。
(4)标志寄存器FLAGS:16位寄存器,8086/8088仅使用了九个标志位。
2 标志寄存器
CF:进位标志位
PF:奇偶标志位
AF:辅助进位位
ZF:零标志位
SF:符号标志位
OF:溢出标志位
TF:跟踪标志位:单步标志
IF:中断标志位
DF:方向标志位
其中前六个为状态标志位,也叫条件码,用作条件转移指令中的判断条件。
后三个为控制标志位,对相关的操作起控制作用。
14个寄存器的内容,将要执行的指令,将要处理的数据,被称作CPU的“现场”,用debug的r命令可以清楚地看到“现场”。
二、内存的分段组织
计算机的基本存储单位是字节,由8个二进制位组成,8个位捆绑使用。可用一个两位16进制数表示其内容。16位CPU一次可以处理两个字节。
为了正确访问内存,每一个存储器单位即字节必须给出一个地址。地址编号从0开始,依次加1,被称为线性编址。
8086的地址线有20根,(详述)能够直接访问的地址空间为2^20即1MB。即内存的地址编号可以从0编到 1M。用16进制数表示内存的物理地址,其地址范围为00000H~FFFFFH,为5位16进制数。每一个内存单元都有一个确定的20位物理地址。
但是,16位CPU的字长为16位,一次只能访问2^16=64k内存,如何访问1M的内存空间呢,在8086CPU中采用了地址分段的办法。即每一个存储单元的物理地址都有段地址和偏移地址两部分构成。
规定:(详述)只有地址为16的整数倍的物理地址可以作为段地址。这样,1MB的内存空间被分为了 1M/16=64K个段。段地址的特征为xxxx0H。
我们知道了段地址和相对于段地址的段内偏移量(偏移地址)后就可以确定一个内存单元的物理地址了。所谓的偏移地址等于内存单元的物理地址减去段地址,不得超过一段(即64k)。
段地址可以不用20位表示,而用16位表示,即xxxx0H=xxxxH*10H表示为xxxxH,用4位16进制数表示。
物理地址的计算公式为:
物理地址=段地址*16+偏移地址
或者,物理地址=段地址*10H+偏移地址
乘以16相当于左移4位。即段地址左移4位和偏移地址相加。按十六进制数描述为,段地址左移一位和偏移地址相加。通常表示为
物理地址=段地址:偏移地址
例如:02002=0200:0002
可以看出,实际上偏移地址也是16位的,每一段的最大空间为2^16=64K,这样,不同的段之间有重叠。也即意味着物理地址可以有不同的表示方法。或者说不同的表示方法可以表示同一个物理地址。
例如:02020=0200:0020=0100:1020=0000:2020=0202:0000=......
举例说明:摩天大楼。
注意:实际上每个段并不一定占用64k的最大空间。
总结:如此麻烦的做法带来的好处是扩大了内存的表示空间,更重要的是,原本很麻烦的程序的再定位工作变得异常简单,实际上一般的程序员以及高级语言并不关心段地址,段地址的分配工作交给操作系统了。
在高级语言中,变量有两个含义:首先表示的是内存的偏移地址,对于占用两个以上存储单元的变量,其地址是低地址,一般为偶数。其次,表示存储的内容,对于字数据(两个字节),其高位存入高地址,低位存入低地址,如
xxxx:0200 2b ...var
xxxx:0201 01
xxxx:0202 00
xxxx:0203 01
对于整型变量 var,地址为0200,内容为01H*256+2BH=01H*100H+2BH=256+32+11
若为双字长整型变量var,则地址一般为4的整数倍。var的地址为0200,其内容为01H*1000000H+01H*100H+ 2BH=4096+256+32+11。
640K~1M 的内存称为 UMB (upper memory block)
它分为a000H,b000H,c000H,d000H,e000H,f000H六个段,f000H段为ROM。存放的是ROM- BIOS(加电自检程序、固化子程序库、硬件参数等)。
加电时,尽管主机板厂家可以不同,计算机总是从 ffff:0000开始运行,其中存放的总是jmp指令,指向加电自检程序(post)真正的起始处。
ffff段除了前16个内存单元(物理地址<1M)外,还可以访问地址超过1M的部分内存,这部分内存称为HMA。
三、寻址方式(略)
取得操作数地址的方式称为寻址方式。
(1)数据寻址
立即寻址:mov al,5
寄存器寻址:mov ax,bx
直接寻址:mov ax,[2000H]
寄存器间接寻址:mov ax,[bx]
寄存器相对寻址:mov ax,offset[si]
基址变址寻址:mov ax,[bx][di]
相对基址变址寻址:mov offset[bx][si]
(2)指令寻址
段内直接寻址:jmp near ptr label1 //near ptr|short
段内间接寻址:jmp word ptr [offset][bp]
段间直接寻址:jmp far ptr label2
段间间接寻址:jmp dword ptr [offset][bx]
(3)端口寻址:
四、指令系统(略)
(一) 指令的执行时间
若时钟周期为T,则指令的基本执行时间如下(最佳寻址方式):
传送mov, 2T
加法add, 3T
整数乘法imul, 128T~154T
整数除法idiv, 165T~184T
移位(即乘以2或除以2), 2T
无条件转移, 15T
条件转移, 不转移 4T 转移 16T
采用不同方式寻址的加法指令执行时间如下:
寄存器到寄存器3T
存储器到寄存器9T+EA
寄存器到存储器16T+EA(访问两次存储器)
立即数到寄存器4T
立即数到存储器17T+EA(访问两次存储器)
不同寻址方式计算有效地址EA所需时间:
直接寻址 6T
寄存器间接寻址 5T
寄存器相对寻址 9T
基址寻址 7T~8T
相对基址变址寻址 11T~12T
总结:从指令执行时间上看,应尽量采用加法,避免乘法,尽量用移位不用乘法
尽量使用寄存器,少用存储器。尽量用简单的寻址方式,少用复杂的寻址方式。
(二) 指令系统
1.1 mov push pop xchg
1.2 in out xlat
1.3 lea lds les
1.4 lahf sahf pushf popf
注意:mov 等传送指令相当于赋值语句。in/out为基本的端口输入和输出
2.1 add adc inc
2.2 sub sbb dec neg cmp
2.3 mul imul
2.4 div idiv cbw cwd
2.5a daa das
2.5b aaa aas aam aad
3.1 and or not xor test
3.2 shl sal shr sal rol ror rcl rcr
4 movs cmps scas lods stos... ...rep repe|repz repne|repnz
5.1 jmp
5.2 jz|je jnz|jne js jns jo jno jp|jpe jnp|jpo jb|jnae|jc jnb|jae|jnc
... ...jb|jnae|jc jnb|jae|jnc jbe|jna jnbe|ja jl|jnge jnl|jge jle|jng jnle|jg
... ...jcxz
5.3 loop loopz|loope loopnz|loopne
5.4 call ret
5.5 int into iret
6.1 clc cmc stc cld std cli sti
6.2 nop hlt wait esc lock
五、汇编程序的格式
(1)汇编语言的语句种类与格式
1 指令语句
标号:指令助记符 操作数1,操作数2;注释
2 伪指令语句
名字 伪指令 参数1,参数2,...;注释
符号定义语句:equ =
数据块定义语句:db dw dd dq dt dup(?)
标号及其属性:
分析符type length size offset seg
标号类型label byte word dword near far
合成符ptr this
3 宏指令
4 段定义
segment ends
定位类型:para bye word page
组合类型:public common stack memory at
类别:code data stack
5 过程定义
proc endp
6 其他伪定义
assume org end
name title
even
radix
short high low
+ - * / mod
and or xor not
eq ne lt gt le ge
(2) com 文件格式(略)
code segment public 'code'
org 100H
assume cs:code,ds:data,es:data
main proc near
jmp start
message db 'How are u?$'
start:mov ah,9
mov dx,offse message
int 21H
int 20H
main endp
code ends
end main
(3) exe 文件格式(略)
stack segment stack 'stack'
db 256dup(?)
stack ends
data segment public 'data'
......
data ends
code segment public 'code'
assume cs:code,ds:data,es:data,ss:stack
main proc far
push ds ;保护psp前缀
xor ax,ax
push ax ;保护偏移0地址
mov ax,data
mov ds,ax
mov es,ax
......
ret
main endp
code ends
end main
六、BIOS中断和DOS功能调用(略)
相当于高级语言中的库函数或者系统子程序。
七、debug和汇编语言上机(略)
微机原理与汇编语言基础
C语言能实现汇编语言的大部分功能,能进行位运算,可以直接对硬件进行操作,例如可以允许直接访问内存或端口的物理地址。因此,学习C语言的人掌握一定的汇编语言基础是必要的。
一、80x86系列CPU的编程结构
寄存器在汇编语言中的地位类似于变量。寄存器变量的访问时间远小于内存变量的访问时间。在汇编语言中大量的使用寄存器而不是直接访问内存。
1 寄存器堆
8086CPU是Intel系列的16位微处理器,有16根数据线和20根地址线,直接寻址空间为2^20即1MB。 8088CPU的对外数据总线为8位,称为准16位微处理器。
8086/8088的内部寄存器(register)共有14个,如下:
(1)通用寄存器:8个,包括数据寄存器、地址指针寄存器、变址寄存器。
数据寄存器4个:AX BX CX DX,它们又可作为8个8位的寄存器使用,即AH BH CH DH AL BL CL DL
AX称为累加器,I/O指令均使用该寄存器,访问外部硬件和接口。
BX称为基址寄存器,在访问内存时用于存放基地址。
CX称为计数寄存器,用于循环、字符串的循环控制。
DX称为数据寄存器,在寄存器间接寻址的i/o指令中存放i/o地址,在作双字运算时[DX][AX]构成一个双字。
地址指针寄存器2个:SP BP
SP称为堆栈指针寄存器,BP称为基址指针寄存器,在作数组和字符串运算时,用于存放内存的偏移地址。
变址寄存器2个:SI DI
SI称为源变址寄存器,DI称为目的变址寄存器,用于数据块操作的内存寻址。
(2)段寄存器4个:CS DS ES SS
CS代码段寄存器,DS数据段寄存器,ES附加段寄存器,SS堆栈段寄存器
用于存放段地址(段基址)
(3)指令指针IP:始终指向将要执行的指令。用户不能直接访问和编程。
(4)标志寄存器FLAGS:16位寄存器,8086/8088仅使用了九个标志位。
2 标志寄存器
CF:进位标志位
PF:奇偶标志位
AF:辅助进位位
ZF:零标志位
SF:符号标志位
OF:溢出标志位
TF:跟踪标志位:单步标志
IF:中断标志位
DF:方向标志位
其中前六个为状态标志位,也叫条件码,用作条件转移指令中的判断条件。
后三个为控制标志位,对相关的操作起控制作用。
14个寄存器的内容,将要执行的指令,将要处理的数据,被称作CPU的“现场”, 用debug的r命令可以清楚地看到“现场”。
二、内存的分段组织
计算机的基本存储单位是字节,由8个二进制位组成,8个位捆绑使用。可用一个两位16进制数表示其内容。16位CPU一次可以处理两个字节。
为了正确访问内存,每一个存储器单位即字节必须给出一个地址。地址编号从0开始,依次加1,被称为线性编址。
8086的地址线有20根,(详述)能够直接访问的地址空间为2^20即1MB。即内存的地址编号可以从0编到 1M。用16进制数表示内存的物理地址,其地址范围为00000H~FFFFFH,为5位16进制数。每一个内存单元都有一个确定的20位物理地址。
但是,16位CPU的字长为16位,一次只能访问2^16=64k内存,如何访问1M的内存空间呢,在8086CPU中采用了地址分段的办法。即每一个存储单元的物理地址都有段地址和偏移地址两部分构成。
规定:(详述)只有地址为16的整数倍的物理地址可以作为段地址。这样,1MB的内存空间被分为了 1M/16=64K个段。段地址的特征为xxxx0H。
我们知道了段地址和相对于段地址的段内偏移量(偏移地址)后就可以确定一个内存单元的物理地址了。所谓的偏移地址等于内存单元的物理地址减去段地址,不得超过一段(即64k)。
段地址可以不用20位表示,而用16位表示,即xxxx0H=xxxxH*10H表示为xxxxH,用4位16进制数表示。
物理地址的计算公式为:
物理地址=段地址*16+偏移地址
或者,物理地址=段地址*10H+偏移地址
乘以16相当于左移4位。即段地址左移4位和偏移地址相加。按十六进制数描述为,段地址左移一位和偏移地址相加。通常表示为
物理地址=段地址:偏移地址
例如:02002=0200:0002
可以看出,实际上偏移地址也是16位的,每一段的最大空间为2^16=64K,这样,不同的段之间有重叠。也即意味着物理地址可以有不同的表示方法。或者说不同的表示方法可以表示同一个物理地址。
例如:02020=0200:0020=0100:1020=0000:2020=0202:0000=......
举例说明:摩天大楼。
注意:实际上每个段并不一定占用64k的最大空间。
总结:如此麻烦的做法带来的好处是扩大了内存的表示空间,更重要的是,原本很麻烦的程序的再定位工作变得异常简单,实际上一般的程序员以及高级语言并不关心段地址,段地址的分配工作交给操作系统了。
在高级语言中,变量有两个含义:首先表示的是内存的偏移地址,对于占用两个以上存储单元的变量,其地址是低地址,一般为偶数。其次,表示存储的内容,对于字数据(两个字节),其高位存入高地址,低位存入低地址,如
xxxx:0200 2b ...var
xxxx:0201 01
xxxx:0202 00
xxxx:0203 01
对于整型变量 var,地址为0200,内容为01H*256+2BH=01H*100H+2BH=256+32+11
若为双字长整型变量var,则地址一般为4的整数倍。var的地址为0200,其内容为01H*1000000H+ 01H*100H+2BH=4096+256+32+11。
640K~1M 的内存称为 UMB (upper memory block)
它分为a000H,b000H,c000H,d000H,e000H,f000H六个段,f000H段为ROM。存放的是ROM -BIOS(加电自检程序、固化子程序库、硬件参数等)。
加电时,尽管主机板厂家可以不同,计算机总是从 ffff:0000开始运行,其中存放的总是jmp指令,指向加电自检程序(post)真正的起始处。
ffff段除了前16个内存单元(物理地址<1M)外,还可以访问地址超过1M的部分内存,这部分内存称为 HMA。
三、寻址方式(略)
取得操作数地址的方式称为寻址方式。
(1)数据寻址
立即寻址:mov al,5
寄存器寻址:mov ax,bx
直接寻址:mov ax,[2000H]
寄存器间接寻址:mov ax,[bx]
寄存器相对寻址:mov ax,offset[si]
基址变址寻址:mov ax,[bx][di]
相对基址变址寻址:mov offset[bx][si]
(2)指令寻址
段内直接寻址:jmp near ptr label1 //near ptr|short
段内间接寻址:jmp word ptr [offset][bp]
段间直接寻址:jmp far ptr label2
段间间接寻址:jmp dword ptr [offset][bx]
(3)端口寻址:
四、指令系统(略)
(一) 指令的执行时间
若时钟周期为T,则指令的基本执行时间如下(最佳寻址方式):
传送mov, 2T
加法add, 3T
整数乘法imul, 128T~154T
整数除法idiv, 165T~184T
移位(即乘以2或除以2), & nbsp; 2T
无条件转移, 15T
条件转移, 不转移 4T 转移 16T
采用不同方式寻址的加法指令执行时间如下:
寄存器到寄存器3T
存储器到寄存器9T+EA
寄存器到存储器16T+EA(访问两次存储器)
立即数到寄存器4T
立即数到存储器17T+EA(访问两次存储器)
不同寻址方式计算有效地址EA所需时间:
直接寻址 6T
寄存器间接寻址 5T
寄存器相对寻址 9T
基址寻址 7T~8T
相对基址变址寻址 11T~12T
总结:从指令执行时间上看,应尽量采用加法,避免乘法,尽量用移位不用乘法
尽量使用寄存器,少用存储器。尽量用简单的寻址方式,少用复杂的寻址方式。
(二) 指令系统
1.1 mov push pop xchg
1.2 in out xlat
1.3 lea lds les
1.4 lahf sahf pushf popf
注意:mov 等传送指令相当于赋值语句。in/out为基本的端口输入和输出
2.1 add adc inc
2.2 sub sbb dec neg cmp
2.3 mul imul
2.4 div idiv cbw cwd
2.5a daa das
2.5b aaa aas aam aad
3.1 and or not xor test
3.2 shl sal shr sal rol ror rcl rcr
4 movs cmps scas lods stos... ...rep repe|repz repne|repnz
5.1 jmp
5.2 jz|je jnz|jne js jns jo jno jp|jpe jnp|jpo jb|jnae|jc jnb|jae|jnc
... ...jb|jnae|jc jnb|jae|jnc jbe|jna jnbe|ja jl|jnge jnl|jge jle|jng jnle|jg
... ...jcxz
5.3 loop loopz|loope loopnz|loopne
5.4 call ret
5.5 int into iret
6.1 clc cmc stc cld std cli sti
6.2 nop hlt wait esc lock
五、汇编程序的格式
(1)汇编语言的语句种类与格式
1 指令语句
标号:指令助记符 操作数1,操作数2;注释
2 伪指令语句
名字 伪指令 参数1,参数2,...;注释
符号定义语句:equ =
数据块定义语句:db dw dd dq dt dup(?)
标号及其属性:
分析符type length size offset seg
标号类型label byte word dword near far
合成符ptr this
3 宏指令
4 段定义
segment ends
定位类型:para bye word page
组合类型:public common stack memory at
类别:code data stack
5 过程定义
proc endp
6 其他伪定义
assume org end
name title
even
radix
short high low
+ - * / mod
and or xor not
eq ne lt gt le ge
(2) com 文件格式(略)
code segment public 'code'
org 100H
assume cs:code,ds:data,es:data
main proc near
jmp start
message db 'How are u?$'
start:mov ah,9
mov dx,offse message
int 21H
int 20H
main endp
code ends
end main
(3) exe 文件格式(略)
stack segment stack 'stack'
db 256dup(?)
stack ends
data segment public 'data'
......
data ends
code segment public 'code'
assume cs:code,ds:data,es:data,ss:stack
main proc far
push ds ;保护psp前缀
xor ax,ax
push ax ;保护偏移0地址
mov ax,data
mov ds,ax
mov es,ax
......
ret
main endp
code ends
end main
六、BIOS中断和DOS功能调用(略)
相当于高级语言中的库函数或者系统子程序。
七、debug和汇编语言上机(略)