KD Tree

最近在项目中用到了,特地搬运过来。

Kd-树 其实是K-dimension tree的缩写,是对数据点在k维空间中划分的一种数据结构。其实,Kd-树是一种平衡二叉树。

举一示例:

假设有六个二维数据点 = {(2,3),(5,4),(9,6),(4,7),(8,1),(7,2)},数据点位于二维空间中。为了能有效的找到最近邻,Kd-树采用分而治之的思想,即将整个空间划分为几个小部分。六个二维数据点生成的Kd-树的图为:

File:Kdtree 2d.svgFile:Tree 0001.svg

                          图1                                                                                           图2

 

而在三维空间中,则是这个样子的

对于拥有n个已知点的kD-Tree,其复杂度如下:

  1. 构建:O(log2n)
  2. 插入:O(log n)
  3. 删除:O(log n)
  4. 查询:O(n1-1/k+m) m---每次要搜索的最近点个数

 Kd-树的构建

Kd-树是一个二叉树,每个节点表示的是一个空间范围。下表表示的是Kd-树中每个节点中主要包含的数据结构。Range域表示的是节点包含的空间范围。Node-data域就是数据集中的某一个n维数据点。分割超面是通过数据点Node-Data并垂直于轴split的平面,分割超面将整个空间分割成两个子空间。令split域的值为i,如果空间Range中某个数据点的第i维数据小于Node-Data[i],那么,它就属于该节点空间的左子空间,否则就属于右子空间。Left,Right域分别表示由左子空间和右子空间空的数据点构成的Kd-树。

 

域名

数据类型

描述

Node-Data

数据矢量

数据集中某个数据点,是n维矢量

Range

空间矢量

该节点所代表的空间范围

Split

整数

垂直于分割超面的方向轴序号

Left

Kd-tree

由位于该节点分割超面左子空间内所有数据点构成的Kd-树

Right

Kd-tree

由位于该节点分割超面左子空间内所有数据点构成的Kd-树

Parent

Kd-tree

父节点

构建Kd-树的伪码为:

算法:构建Kd-tree

输入:数据点集Data_Set,和其所在的空间。

输出:Kd,类型为Kd-tree

1 if data-set is null ,return 空的Kd-tree

2 调用节点生成程序

 (1)确定split域:对于所有描述子数据(特征矢量),统计他们在每个维度上的数据方差,挑选出方差中最大值,对应的维就是split域的值。数据方差大说明沿该坐标轴方向上数据点分散的比较开。这个方向上,进行数据分割可以获得最好的分辨率。

(2)确定Node-Data域,数据点集Data-Set按照第split维的值排序,位于正中间的那个数据点 被选为Node-Data,Data-Set` =Data-Set\Node-data

3 dataleft = {d 属于Data-Set` & d[:split]<=Node-data[:split]}

   Left-Range ={Range && dataleft}

  dataright = {d 属于Data-Set` & d[:split]>Node-data[:split]}

  Right-Range ={Range && dataright}

4:left = 由(dataleft,LeftRange)建立的Kd-tree

   设置:left的parent域(父节点)为Kd

  :right = 由(dataright,RightRange)建立的Kd-tree

  设置:right的parent域为kd。

如上例中,

(1)确定:split 域=x,6个数据点在x,y 维度上的数据方差为39,28.63.在x轴方向上的方差大,所以split域值为x。

(2)确定:Node-Data=(7,2),根据x维上的值将数据排序,6个数据的中值为7,所以node-data域为数据点(7,2)。这样该节点的分割超面就是通过(7,2)并垂直于:split=x轴的直线x=7.

(3)左子空间和右子空间,分割超面x=7将整个空间分为两部分。x<=7 为左子空间,包含节点(2,3),(5,4),(4,7),另一部分为右子空间。包含节点(9,6),(8,1)

 

这个构建过程是一个递归过程。重复上述过程,直至只包含一个节点。

 

posted @ 2014-08-05 09:19  Kevin_Geek  阅读(195)  评论(0编辑  收藏  举报