【POJ】3468 A Simple Problem with Integers ——线段树 成段更新 懒惰标记

 A Simple Problem with Integers
Time Limit:5000MS   Memory Limit:131072K
Case Time Limit:2000MS

Description

You have N integers, A1A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.

Input

The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
The second line contains N numbers, the initial values of A1A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
Each of the next Q lines represents an operation.
"C a b c" means adding c to each of AaAa+1, ... , Ab. -10000 ≤ c ≤ 10000.
"Q a b" means querying the sum of AaAa+1, ... , Ab.

Output

You need to answer all Q commands in order. One answer in a line.

Sample Input

10 5
1 2 3 4 5 6 7 8 9 10
Q 4 4
Q 1 10
Q 2 4
C 3 6 3
Q 2 4

Sample Output

4
55
9
15

Hint

The sums may exceed the range of 32-bit integers.
 
题解:本题也是线段树系列的模板题之一,要求的是成段更新+懒惰标记。PS:原题的说明有问题,上面说的“C a b c”中的c的范围其实在int32之外,需要使用long long,否则定是WA,真心坑爹,连WA多次,还是在discuss中看到的原因。
 
稍微讲解下代码中的一些细节: step<<1 与 step<<1|1,意思分别是step*2 和step*+1,具体为什么,可以回去复习一下位运算
 
AC代码如下:
 
 
  1 #include <cstdio>
  2 #include <cstring>
  3 
  4 typedef long long ll;
  5 const int LEN = 100000 * 4;
  6 
  7 struct line
  8 {
  9     int left;
 10     int right;
 11     ll value;
 12     ll lazy;  //懒惰标记
 13 }line[LEN];
 14 
 15 void buildt(int l, int r, int step)  //建树初始化
 16 {
 17     line[step].left = l;
 18     line[step].right = r;
 19     line[step].lazy = 0;
 20     line[step].value = 0;
 21     if (l == r)
 22         return;
 23     int mid = (l + r) / 2;
 24     buildt(l, mid, step<<1);
 25     buildt(mid+1, r, step<<1|1);
 26 }
 27 
 28 void pushdown(int step)
 29 {
 30     if (line[step].left == line[step].right) //如果更新到最深处的子节点,返回
 31         return;
 32     if (line[step].lazy != 0){  //如果有懒惰标记,向下传递懒惰标记且更新两个子节点的值
 33         line[step<<1].lazy += line[step].lazy;
 34         line[step<<1|1].lazy += line[step].lazy;
 35         line[step<<1].value += (line[step<<1].right - line[step<<1].left + 1) * line[step].lazy;
 36         line[step<<1|1].value += (line[step<<1|1].right - line[step<<1|1].left + 1) * line[step].lazy;
 37         line[step].lazy = 0;
 38     }
 39 }
 40 
 41 void update(int l, int r, ll v, int step)
 42 {
 43     line[step].value += v * (r-l+1);  //更新到当前节点,就在当前节点的value中加上增加的值
 44     pushdown(step);
 45     if (line[step].left == l && line[step].right == r){ //如果到达目标线段,做上懒惰标记,返回
 46         line[step].lazy = v;
 47         return;
 48     }
 49     int mid = (line[step].left + line[step].right) / 2;
 50     if (r <= mid)
 51         update(l, r, v, step<<1);
 52     else if (l > mid)
 53         update(l, r, v, step<<1|1);
 54     else{
 55         update(l, mid, v, step<<1);
 56         update(mid+1, r, v, step<<1|1);
 57     }
 58 }
 59 
 60 ll findans(int l, int r, int step)
 61 {
 62     if (l == line[step].left && r == line[step].right)  //如果找到目标线段,返回值
 63         return line[step].value;
 64     pushdown(step);
 65     int mid = (line[step].left + line[step].right) / 2;
 66     if (r <= mid)
 67         return findans(l, r, step<<1);
 68     else if (l > mid)
 69         return findans(l, r, step<<1|1);
 70     else
 71         return findans(l, mid, step<<1) + findans(mid+1, r, step<<1|1);
 72 }
 73 
 74 int main()
 75 {
 76     //freopen("in.txt", "r", stdin);
 77     int n, q;
 78     scanf("%d %d", &n, &q);
 79     buildt(1, n, 1);
 80     for(int i = 1; i <= n; i++){
 81         ll t;
 82         scanf("%I64d", &t);
 83         update(i, i, t, 1);
 84     }
 85     for(int i = 0; i < q; i++){
 86         char query[2];
 87         scanf("%s", query);
 88         if (query[0] == 'C'){
 89             int a, b;
 90             ll c;
 91             scanf("%d %d %I64d", &a, &b, &c);
 92             update(a, b, c, 1);
 93         }
 94         else if (query[0] == 'Q'){
 95             int a, b;
 96             scanf("%d %d", &a, &b);
 97             printf("%I64d\n", findans(a, b, 1));
 98         }
 99     }
100     return 0;
101 }

 

 

posted @ 2014-08-03 17:22  Prime-Kv  阅读(455)  评论(0编辑  收藏  举报