Flink执行计划第二层——StreamGraph

一、LocalStreamEnvironment

LocalStreamEnvironmentStreamExecutionEnvironment 的子类,它在本地、多线程、在实例化LocalStreamEnvironment的 JVM 中运行程序。
它在后台生成一个嵌入式 Flink 集群并在该集群上执行程序。
实例化此环境时,它使用默认并行性(默认值为1)。默认并行度可以通过 setParallelism(int) 设置。

我们通常会在写完 Stream API 后,调用 env.execute() 方法。如果在本地执行,则会调用 LocalStreamEnvironment#execute 方法,方法中的第一段源码为:

StreamGraph streamGraph = getStreamGraph();
streamGraph.setJobName(jobName);

接着继续跟踪 StreamExecutionEnvironment#getStreamGraph() 的源码:

/**
 * Getter of the {@link org.apache.flink.streaming.api.graph.StreamGraph} of the streaming job.
 *
 * @return The streamgraph representing the transformations
 */
@Internal
public StreamGraph getStreamGraph() {
	if (transformations.size() <= 0) {
		throw new IllegalStateException("No operators defined in streaming topology. Cannot execute.");
	}
	return StreamGraphGenerator.generate(this, transformations);
}

这段源码也非常简单,生成 StreamGraph 的逻辑封装在 StreamGraphGenerator 中。

二、StreamGraphGenerator

继续跟踪代码,将 StreamExecutionEnvironment 的实例对象传递给 StreamGraphGenerator 并创建对象后,就调用了 StreamGraphGenerator#generateInternal 方法:

/**
 * This starts the actual transformation, beginning from the sinks.
 */
private StreamGraph generateInternal(List<StreamTransformation<?>> transformations) {
	for (StreamTransformation<?> transformation: transformations) {
		transform(transformation);
	}
	return streamGraph;
}

这里遍历的 transformations 保存的是我在上一节《Flink执行计划第一层——StreamTransformation》中提到的由我们的 Stream API 代码生成的StreamTransformation集合。

2.1 transform

接下来我们来跟踪一下 StreamGraphGenerator#transform 的代码:

/**
 * Transforms one {@code StreamTransformation}.
 *
 * <p>This checks whether we already transformed it and exits early in that case. If not it
 * delegates to one of the transformation specific methods.
 */
private Collection<Integer> transform(StreamTransformation<?> transform) {
	if (alreadyTransformed.containsKey(transform)) {
		return alreadyTransformed.get(transform);
	}
	LOG.debug("Transforming " + transform);
	if (transform.getMaxParallelism() <= 0) {
		// if the max parallelism hasn't been set, then first use the job wide max parallelism
		// from the ExecutionConfig.
		int globalMaxParallelismFromConfig = env.getConfig().getMaxParallelism();
		if (globalMaxParallelismFromConfig > 0) {
			transform.setMaxParallelism(globalMaxParallelismFromConfig);
		}
	}
	// call at least once to trigger exceptions about MissingTypeInfo
	transform.getOutputType();
	Collection<Integer> transformedIds;
	if (transform instanceof OneInputTransformation<?, ?>) {
		transformedIds = transformOneInputTransform((OneInputTransformation<?, ?>) transform);
	} else if (transform instanceof TwoInputTransformation<?, ?, ?>) {
		transformedIds = transformTwoInputTransform((TwoInputTransformation<?, ?, ?>) transform);
	} else if (transform instanceof SourceTransformation<?>) {
		transformedIds = transformSource((SourceTransformation<?>) transform);
	} else if (transform instanceof SinkTransformation<?>) {
		transformedIds = transformSink((SinkTransformation<?>) transform);
	} else if (transform instanceof UnionTransformation<?>) {
		transformedIds = transformUnion((UnionTransformation<?>) transform);
	} else if (transform instanceof SplitTransformation<?>) {
		transformedIds = transformSplit((SplitTransformation<?>) transform);
	} else if (transform instanceof SelectTransformation<?>) {
		transformedIds = transformSelect((SelectTransformation<?>) transform);
	} else if (transform instanceof FeedbackTransformation<?>) {
		transformedIds = transformFeedback((FeedbackTransformation<?>) transform);
	} else if (transform instanceof CoFeedbackTransformation<?>) {
		transformedIds = transformCoFeedback((CoFeedbackTransformation<?>) transform);
	} else if (transform instanceof PartitionTransformation<?>) {
		transformedIds = transformPartition((PartitionTransformation<?>) transform);
	} else if (transform instanceof SideOutputTransformation<?>) {
		transformedIds = transformSideOutput((SideOutputTransformation<?>) transform);
	} else {
		throw new IllegalStateException("Unknown transformation: " + transform);
	}
	// need this check because the iterate transformation adds itself before
	// transforming the feedback edges
	if (!alreadyTransformed.containsKey(transform)) {
		alreadyTransformed.put(transform, transformedIds);
	}
	if (transform.getBufferTimeout() >= 0) {
		streamGraph.setBufferTimeout(transform.getId(), transform.getBufferTimeout());
	}
	if (transform.getUid() != null) {
		streamGraph.setTransformationUID(transform.getId(), transform.getUid());
	}
	if (transform.getUserProvidedNodeHash() != null) {
		streamGraph.setTransformationUserHash(transform.getId(), transform.getUserProvidedNodeHash());
	}
	if (transform.getMinResources() != null && transform.getPreferredResources() != null) {
		streamGraph.setResources(transform.getId(), transform.getMinResources(), transform.getPreferredResources());
	}
	return transformedIds;
}

transform 方法是会被递归调用的方法:

根据 《入门Flink的第一个程序——WordCount》 的例子,我画出了对应的示意图:

  • transformations 表示的是 StreamExecutionEnvironment 的成员变量,同时也是 StreamGraphGenerator#generateInternal(List<StreamTransformation<?>>) 的方法参数;
  • 从“逻辑顺序”来看,transform 方法的转换顺序,实质上是从 SourceTransformation “逆向”沿着 input 引用,经过 OneInputTransformation(id=2)、PartitionTransformationOneInputTransformation(id=4),到达 SinkTransformation

2.2 transformSource

所以,我们现在可以按顺序来看源码了,所以首先看针对 SourceTransformation 的转换方法 transformSource

/**
 * Transforms a {@code SourceTransformation}.
 */
private <T> Collection<Integer> transformSource(SourceTransformation<T> source) {
	String slotSharingGroup = determineSlotSharingGroup(source.getSlotSharingGroup(), Collections.emptyList());
	streamGraph.addSource(source.getId(),
			slotSharingGroup,
			source.getCoLocationGroupKey(),
			source.getOperator(),
			null,
			source.getOutputType(),
			"Source: " + source.getName());
	if (source.getOperator().getUserFunction() instanceof InputFormatSourceFunction) {
		InputFormatSourceFunction<T> fs = (InputFormatSourceFunction<T>) source.getOperator().getUserFunction();
		streamGraph.setInputFormat(source.getId(), fs.getFormat());
	}
	streamGraph.setParallelism(source.getId(), source.getParallelism());
	streamGraph.setMaxParallelism(source.getId(), source.getMaxParallelism());
	return Collections.singleton(source.getId());
}

StreamGraphGenerator#transformSource 最核心的逻辑就是 StreamGraph#addSource 方法,这个下一小节再讨论。

  • transformSource 主要作用就是将 SourceTransformation 转换出 StreamNode,用于组成 StreamGraph

  • transformSource 方法执行完成后,继续回到 transform 方法,将当前转换好的 SourceTransformation 对象 put 到 StreamGraphGenerator 的成员变量 alreadyTransformed: Map<StreamTransformation<?> Collection<Integer>>

2.3 transformOneInputTransform

以下是 StreamGraphGeneratortransformOneInputTransform 的源码:

/**
 * Transforms a {@code OneInputTransformation}.
 *
 * <p>This recursively transforms the inputs, creates a new {@code StreamNode} in the graph and
 * wired the inputs to this new node.
 */
private <IN, OUT> Collection<Integer> transformOneInputTransform(OneInputTransformation<IN, OUT> transform) {
        // 
	Collection<Integer> inputIds = transform(transform.getInput());
	// the recursive call might have already transformed this
	if (alreadyTransformed.containsKey(transform)) {
		return alreadyTransformed.get(transform);
	}
	String slotSharingGroup = determineSlotSharingGroup(transform.getSlotSharingGroup(), inputIds);
	streamGraph.addOperator(transform.getId(),
			slotSharingGroup,
			transform.getCoLocationGroupKey(),
			transform.getOperator(),
			transform.getInputType(),
			transform.getOutputType(),
			transform.getName()); 
	if (transform.getStateKeySelector() != null) {
		TypeSerializer<?> keySerializer = transform.getStateKeyType().createSerializer(env.getConfig());
		streamGraph.setOneInputStateKey(transform.getId(), transform.getStateKeySelector(), keySerializer);
	}
	streamGraph.setParallelism(transform.getId(), transform.getParallelism());
	streamGraph.setMaxParallelism(transform.getId(), transform.getMaxParallelism());
	for (Integer inputId: inputIds) {
		streamGraph.addEdge(inputId, transform.getId(), 0);
	}
	return Collections.singleton(transform.getId());
}

transformOneInputTransform 调用了 StreamGraph 的 addOperator 方法来创建 StreamNode,同时还调用了 addEdge 方法来添加 StreamEdge,这个在下一小节再分析。

2.4 transformPartition

接着再来看一下 StreamGraphGeneratortransformPartition 的源码:

/**
 * Transforms a {@code PartitionTransformation}.
 *
 * <p>For this we create a virtual node in the {@code StreamGraph} that holds the partition
 * property. @see StreamGraphGenerator
 */
private <T> Collection<Integer> transformPartition(PartitionTransformation<T> partition) {
	StreamTransformation<T> input = partition.getInput();
	List<Integer> resultIds = new ArrayList<>();
	Collection<Integer> transformedIds = transform(input);
	for (Integer transformedId: transformedIds) {
                // 注意,这里生成了新的唯一id
		int virtualId = StreamTransformation.getNewNodeId();
		streamGraph.addVirtualPartitionNode(transformedId, virtualId, partition.getPartitioner());
		resultIds.add(virtualId);
	}
	return resultIds;
}

transformPartition 又调用了 StreamGraphaddVirtualPartitionNode 方法,这个方法也在下一小节解析。

2.5 transformSink

最后,来看一下 StreamGraphGeneratortransformSink 的源码:

/**
 * Transforms a {@code SourceTransformation}.
 */
private <T> Collection<Integer> transformSink(SinkTransformation<T> sink) {
	Collection<Integer> inputIds = transform(sink.getInput());
	String slotSharingGroup = determineSlotSharingGroup(sink.getSlotSharingGroup(), inputIds);
	streamGraph.addSink(sink.getId(),
			slotSharingGroup,
			sink.getCoLocationGroupKey(),
			sink.getOperator(),
			sink.getInput().getOutputType(),
			null,
			"Sink: " + sink.getName());
	streamGraph.setParallelism(sink.getId(), sink.getParallelism());
	streamGraph.setMaxParallelism(sink.getId(), sink.getMaxParallelism());
	for (Integer inputId: inputIds) {
		streamGraph.addEdge(inputId,
				sink.getId(),
				0
		);
	}
	if (sink.getStateKeySelector() != null) {
		TypeSerializer<?> keySerializer = sink.getStateKeyType().createSerializer(env.getConfig());
		streamGraph.setOneInputStateKey(sink.getId(), sink.getStateKeySelector(), keySerializer);
	}
	return Collections.emptyList();
}

transformSink 又调用了 StreamGraphaddSink 方法,同时也调用了 addEdge 方法,这些方法也将在下一小节解析。

三、StreamGraph

首先,这里用到了“图”(Graph) 这种数据结构。

  • 图包含若干个节点(Node);
  • 两个节点相连的部分称为边(Edge);
  • 节点也被称作顶点(Vertex);

图片引用自《初学者应该了解的数据结构: Graph》

3.1 addSource&addSink

我们来看一下 StreamGraphaddSourceaddSink 源码:

public <IN, OUT> void addSource(Integer vertexID,
	String slotSharingGroup,
	@Nullable String coLocationGroup,
	StreamOperator<OUT> operatorObject,
	TypeInformation<IN> inTypeInfo,
	TypeInformation<OUT> outTypeInfo,
	String operatorName) {
	addOperator(vertexID, slotSharingGroup, coLocationGroup, operatorObject, inTypeInfo, outTypeInfo, operatorName);
	sources.add(vertexID);
}
public <IN, OUT> void addSink(Integer vertexID,
	String slotSharingGroup,
	@Nullable String coLocationGroup,
	StreamOperator<OUT> operatorObject,
	TypeInformation<IN> inTypeInfo,
	TypeInformation<OUT> outTypeInfo,
	String operatorName) {
	addOperator(vertexID, slotSharingGroup, coLocationGroup, operatorObject, inTypeInfo, outTypeInfo, operatorName);
	sinks.add(vertexID);
}
  • sources 用来记录图中作为“数据源”的顶点的id
  • sinks 用来记录图中作为“终点”的顶点的id

两者调用了相同的方法 addOperator

3.2 addOperator&&addNode

addOperator 的调用有三处:

源码如下:

public <IN, OUT> void addOperator(
		Integer vertexID,
		String slotSharingGroup,
		@Nullable String coLocationGroup,
		StreamOperator<OUT> operatorObject,
		TypeInformation<IN> inTypeInfo,
		TypeInformation<OUT> outTypeInfo,
		String operatorName) {
	if (operatorObject instanceof StoppableStreamSource) {
		addNode(vertexID, slotSharingGroup, coLocationGroup, StoppableSourceStreamTask.class, operatorObject, operatorName);
	} else if (operatorObject instanceof StreamSource) {
		addNode(vertexID, slotSharingGroup, coLocationGroup, SourceStreamTask.class, operatorObject, operatorName);
	} else {
		addNode(vertexID, slotSharingGroup, coLocationGroup, OneInputStreamTask.class, operatorObject, operatorName);
	}
	TypeSerializer<IN> inSerializer = inTypeInfo != null && !(inTypeInfo instanceof MissingTypeInfo) ? inTypeInfo.createSerializer(executionConfig) : null;
	TypeSerializer<OUT> outSerializer = outTypeInfo != null && !(outTypeInfo instanceof MissingTypeInfo) ? outTypeInfo.createSerializer(executionConfig) : null;
	setSerializers(vertexID, inSerializer, null, outSerializer);
	if (operatorObject instanceof OutputTypeConfigurable && outTypeInfo != null) {
		@SuppressWarnings("unchecked")
		OutputTypeConfigurable<OUT> outputTypeConfigurable = (OutputTypeConfigurable<OUT>) operatorObject;
		// sets the output type which must be know at StreamGraph creation time
		outputTypeConfigurable.setOutputType(outTypeInfo, executionConfig);
	}
	if (operatorObject instanceof InputTypeConfigurable) {
		InputTypeConfigurable inputTypeConfigurable = (InputTypeConfigurable) operatorObject;
		inputTypeConfigurable.setInputType(inTypeInfo, executionConfig);
	}
	if (LOG.isDebugEnabled()) {
		LOG.debug("Vertex: {}", vertexID);
	}
}

这段方法,首先就是要创建节点(addNode),然后对节点进行设置。

protected StreamNode addNode(Integer vertexID,
	String slotSharingGroup,
	@Nullable String coLocationGroup,
	Class<? extends AbstractInvokable> vertexClass,
	StreamOperator<?> operatorObject,
	String operatorName) {
	if (streamNodes.containsKey(vertexID)) {
		throw new RuntimeException("Duplicate vertexID " + vertexID);
	}
	StreamNode vertex = new StreamNode(environment,
		vertexID,
		slotSharingGroup,
		coLocationGroup,
		operatorObject,
		operatorName,
		new ArrayList<OutputSelector<?>>(),
		vertexClass);
        // 顶点id映射顶点对象
	streamNodes.put(vertexID, vertex);
	return vertex;
}

3.3 addEdge

StreamGraphaddEdge 方法的源码很简单,主要逻辑还是在 addEdgeInternal 中:

public void addEdge(Integer upStreamVertexID, Integer downStreamVertexID, int typeNumber) {
	addEdgeInternal(upStreamVertexID,
			downStreamVertexID,
			typeNumber,
			null,
			new ArrayList<String>(),
			null);
}

addEdgeInternal 是一个可以递归调用的方法:

private void addEdgeInternal(Integer upStreamVertexID,
		Integer downStreamVertexID,
		int typeNumber,
		StreamPartitioner<?> partitioner,
		List<String> outputNames,
		OutputTag outputTag) {
	if (virtualSideOutputNodes.containsKey(upStreamVertexID)) {
		int virtualId = upStreamVertexID;
		upStreamVertexID = virtualSideOutputNodes.get(virtualId).f0;
		if (outputTag == null) {
			outputTag = virtualSideOutputNodes.get(virtualId).f1;
		}
		addEdgeInternal(upStreamVertexID, downStreamVertexID, typeNumber, partitioner, null, outputTag);
	} else if (virtualSelectNodes.containsKey(upStreamVertexID)) {
		int virtualId = upStreamVertexID;
		upStreamVertexID = virtualSelectNodes.get(virtualId).f0;
		if (outputNames.isEmpty()) {
			// selections that happen downstream override earlier selections
			outputNames = virtualSelectNodes.get(virtualId).f1;
		}
		addEdgeInternal(upStreamVertexID, downStreamVertexID, typeNumber, partitioner, outputNames, outputTag);
	} else if (virtualPartitionNodes.containsKey(upStreamVertexID)) {
		int virtualId = upStreamVertexID;
		upStreamVertexID = virtualPartitionNodes.get(virtualId).f0;
		if (partitioner == null) {
			partitioner = virtualPartitionNodes.get(virtualId).f1;
		}
		addEdgeInternal(upStreamVertexID, downStreamVertexID, typeNumber, partitioner, outputNames, outputTag);
	} else {
		StreamNode upstreamNode = getStreamNode(upStreamVertexID);
		StreamNode downstreamNode = getStreamNode(downStreamVertexID);
		// If no partitioner was specified and the parallelism of upstream and downstream
		// operator matches use forward partitioning, use rebalance otherwise.
		if (partitioner == null && upstreamNode.getParallelism() == downstreamNode.getParallelism()) {
			partitioner = new ForwardPartitioner<Object>();
		} else if (partitioner == null) {
			partitioner = new RebalancePartitioner<Object>();
		}
		if (partitioner instanceof ForwardPartitioner) {
			if (upstreamNode.getParallelism() != downstreamNode.getParallelism()) {
				throw new UnsupportedOperationException("Forward partitioning does not allow " +
						"change of parallelism. Upstream operation: " + upstreamNode + " parallelism: " + upstreamNode.getParallelism() +
						", downstream operation: " + downstreamNode + " parallelism: " + downstreamNode.getParallelism() +
						" You must use another partitioning strategy, such as broadcast, rebalance, shuffle or global.");
			}
		}
		StreamEdge edge = new StreamEdge(upstreamNode, downstreamNode, typeNumber, outputNames, partitioner, outputTag);
		getStreamNode(edge.getSourceId()).addOutEdge(edge);
		getStreamNode(edge.getTargetId()).addInEdge(edge);
	}
}

3.4 创建图的过程

  1. addNode 创建 StreamNode(id=1):
  2. addNode 创建 StreamNode(id=2):
  3. addEdge 创建 StreamNode(id=1)和 StreamNode(id=2)之间的边 StreamEdge,然后添加到 StreamNode(id=1)的 outEdges 列表以及 StreamNode(id=2)的 inEdges 列表:
  4. addVirtualPartitionNode 新增 id=6 的虚拟节点,输入节点 id=2:
  5. addNode 创建 StreamNode(id=4):
  6. addEdge 创建 StreamNode(id=2)和 StreamNode(id=4)之间的边 ,然后添加到 StreamNode(id=2)的 outEdges 列表以及 StreamNode(id=4)的 inEdges 列表:
  7. addNode 创建 StreamNode(id=5):
  8. addEdge 创建 StreamNode(id=4)和 StreamNode(id=5)之间的边 ,然后添加到 StreamNode(id=4)的 outEdges 列表以及 StreamNode(id=5)的 inEdges 列表:

观察对比第3步和第8步,可以发现 outputPartitioner 不相同,一个是 ForwardPartitioner,另一个是 RebalancePartitioner,如果两个节点的 parallelism 相等,使用前者,不相等则使用后者。
判断逻辑的源码如下:

// If no partitioner was specified and the parallelism of upstream and downstream
// operator matches use forward partitioning, use rebalance otherwise.
if (partitioner == null && upstreamNode.getParallelism() == downstreamNode.getParallelism()) {
	partitioner = new ForwardPartitioner<Object>();
} else if (partitioner == null) {
	partitioner = new RebalancePartitioner<Object>();
}

四、小结

StreamExecutionEnvironmentgetExecutionPlan 方法返回类型正是 StreamGraph,在《Flink执行计划第一层——StreamTransformation》 已经展示过执行计划的可视化功能了,最后再摆一次这张图:

posted @ 2021-11-09 11:45  极客子羽  阅读(518)  评论(0编辑  收藏  举报