2013年9月28日

Sparse Filtering简介

摘要: 当前很多的特征学习(feature learning)算法需要很多的超参数(hyper-parameter)调节, Sparse Filtering则只需要一个超参数--需要学习的特征的个数, 所以非常易于进行参数调节.1.特征分布及其特性 基本上所有的参数学习算法都是要生成特定的特征分布, 比如sparse coding是要学得一种稀疏的特征, 亦即学到的特征中只有较少的非零项. 基本上所有的特征学习算法都是为了优化特征分布的某些特性的.Sparse Filtering也是这样的一种特征学习方法, 其目的是为了学到拥有一下特定特性的特征, 为了简洁, 首先定义一下符号表示, 令M为特征分布. 阅读全文

posted @ 2013-09-28 12:13 潘的博客 阅读(3309) 评论(0) 推荐(0) 编辑

导航