2013年1月27日

机器学习-核Fisher LDA算法

摘要: 本文在我的上一篇博文 机器学习-特征选择(降维) 线性判别式分析(LDA)的基础上进一步介绍核Fisher LDA算法。 之前我们介绍的LDA或者Fisher LDA都是线性模型,该模型简单,对噪音的鲁棒性较好,不容易过拟合,但是,简单模型的表达能力会弱一些,为了增加LDA算法的表达能力,我们可以将数据投影到非线性的方向上去。为了达到这个目的,我们可以先将数据非线性的投影到一个特征空间F内,然后在这个F空间内计算Fisher 线性判别式,达到降维的目的。 首先介绍一下核函数的概念: 如果F空间的维数非常高甚至是无穷维数,那么单纯的只是将原数据投影到F空间就是一个很大的计算量。但是,我们可以并. 阅读全文

posted @ 2013-01-27 21:24 潘的博客 阅读(8981) 评论(0) 推荐(0) 编辑

机器学习-特征选择(降维) 线性判别式分析(LDA)

摘要: 特征选择(亦即降维)是数据预处理中非常重要的一个步骤。对于分类来说,特征选择可以从众多的特征中选择对分类最重要的那些特征,去除原数据中的噪音。主成分分析(PCA)与线性判别式分析(LDA)是两种最常用的特征选择算法。关于PCA的介绍,可以见我的另一篇博文。这里主要介绍线性判别式分析(LDA),主要基于Fisher Discriminant Analysis with Kernals[1]和Fisher Linear Discriminant Analysis[2]两篇文献。 LDA与PCA的一大不同点在于,LDA是有监督的算法,而PCA是无监督的,因为PCA算法没有考虑数据的标签(类别),只. 阅读全文

posted @ 2013-01-27 19:50 潘的博客 阅读(8199) 评论(2) 推荐(3) 编辑

导航