爬虫学习笔记

用python写网络爬虫笔记

文档(python2.7):
os库的使用
python re正则的使用
requests库
BeautifulSoup
scrapy
pickle序列化模块
pickle官方文档
datetime

第一章:

检查robots.txt 和sitemap确定网站规格
尽可能不要去爬取那些rotbots禁止的文件夹,否则有可能被服务器封ip
可以利用网站地图对网站进行爬取
数百个网页的站点可以使用串行下载,如果是数百万个网页需要用到分布式
估算网站大小可以使用google爬虫的结果 http://google.com/advanced_search site 在域名后面加上url路径可以对结果进行进一步过滤
识别网站所用技术builtwith模块

import builtwith   
builtwith.parse('http://www.baidu.com')   

whois协议查询域名的注册者,https://pypi.python.org/pypi/python-whois #python-whois
Google的域名常常会阻断网络爬虫...................
1.4编写第一个网络爬虫
1.爬取
爬地图 遍历网页数据库id 追踪网页链接
换书了

python网络数据采集

第一章

这本书代码使用python3写的,对我很不友好..........
爬取数据的时候可以尝试使用移动设备的请求头试试,可能网页变得更有规则和逻辑
查看js文件里面的信息
可以尝试更改爬取的数据源
网络爬虫可以通过class属性的值分出标签来

第二章

findAll(tag, attributes, recursive, text, limit, keywords)
find(tag, attributes, recursive, text, keywords) attributes是dict类型,多个信息用{}包裹起来example:find({"h1","h2"})
recursive递归参数boolean findall(text="the price") python居然可以这么用,直接指定使用哪个参数
limit find等价于findall limit=1的时候
keyword 指定属性的标签 alltext=bsobj.findall(id="text")
tags太长时候可以使用keyword增加一个与的过滤器来简化工作
.child 子标签 descendant 后代
子标签是父标签的下一级,后台标签是父标签的所有下级
next_siblings和previos_siblings函数,找到兄弟标签的最后一个标签 next_sibling 和previous_sibling 函数,返回单个标签
查找父标签parent和parents标签

2.3正则表达式

regex正则坑爹表达式
attrs返回的是一个 字典类型
Lambda表达式 把一个标签作为参数,并且返回结果是布尔类型
soup.findAll(lambda tag: len(tag.attrs)==2)

2.7

可以尝试lxml 和html.parser

第三章 开始采集

维基百科六度分隔理论
使用正则匹配
去重可以节省资源,使用python的set类型,pages=set()
python的默认地柜是1000次,
是时候使用scrapy采集工具了

我去第四章了

json库的使用,json被转换成字典,json数组变成了列表
scrapy库的使用
scrapy库运行的时候调式信息太多,可以手动在setting。py中进行设置,调整调试的等级
api调用
列表迭代比集合快,集合查找速度更快一些 python集合就是值为none的字典,用的是hash表的结构,所以查询速度的是O(1)
第四章有点问题googleapi没有注册成功,等注册好了,在实验一次吧

第五章 存储数据

存储文件的两种方式,一种是获取url,或者是直接下载源文件
用了别人的链接叫盗链hotlinking
mysql基本指令
insert into table
create table 表名,后面是初始化的列
drop
delete
python
pymysql操作数据库小demo:

import pymysql
import socket

connection = pymysql.connect(host='localhost',
                             user='root',
                             password='Kele1997',
                             db='scraping',
                             charset='utf8mb4',
                            )
print connection
'''
sql="insert into page (id,title) values (%s,%s)"
connection.cursor().execute(sql,(5,"zzsafsfsf"))
connection.commit()
'''
cur=connection.cursor()
select2333=cur.execute('show databases;')
print cur.fetchall()
print cur.fetchone()
cur.close()
connection.close()

第六章

从网上直接把文件读成一个字符串,然后转换成一个 StringIO 对象,使它具有文件的
属性。

dataFile=StringIO(data)

csv类型的文件是可以进行迭代的
csv.DictReader: 跳过csv的文件的标题

    提示这个词可能有拼写错误。
    文档的标题是由样式定义标签 <w:pStyle w:val="Title"/> 处理的。虽然不能非常简单地定
    位标题(或其他带样式的文本),但是用 BeautifulSoup 的导航功能还是可以帮助我们解决
    问题的:
    textStrings = wordObj.findAll("w:t")
    for textElem in textStrings:
     closeTag = ""
     try:
     style = textElem.parent.previousSibling.find("w:pstyle")
     if style is not None and style["w:val"] == "Title":
     print("<h1>")
     closeTag = "</h1>"
     except AttributeError:
     #不打印标签
     pass
     print(textElem.text)
     print(closeTag)
    这段代码很容易进行扩展,打印不同文本样式的标签,或者把它们标记成其他形式

第二部分高级数据采集

第七章数据清洗

n-gram 自然语言分析的时候搜索n-gram

不过 Python 的字典是无序的,不能像数组一样直接对 n-gram 序列频率进行排序。字典内
部元素的位置不是固定的,排序之后再次使用时还是会变化,除非你把排序过的字典里的
值复制到其他类型中进行排序。在 Python 的 collections 库里面有一个 OrderedDict 可以
解决这个问题:

python sort 函数
openrefine 第三方工具清洗数据u
openrefine的使用跳过了

第八章自然语言处理

shazam音乐雷达可以听歌识曲
哈里森总统最长的就职演说,和最短的任职时间
使用常用的语料库来清洗数据
使用马卡洛夫模型从中摘取文本
暂时跳过,后续补上..........看不太懂

第九章穿越网页表单和登录

字段名称和值,字段的值有的是经过js处理之后再传入的
如果不确定,可以通过一些工具跟踪网页发出get和post请求的内容
inspector chrome的审查元素

提取文件和图像:把参数的值变成一个文件对象就ok了
使用requests跟踪cookie,先向登录界面发送post请求,获得cookie,然后呢,使用这个cookie发送到需要登录的这个网站的其他页面
当然还有request的另一个函数session函数
'''
import requests
session=requests.Session()
params={'username':'username',"password":"password"}
s=session.post("http:url",params)
print s.cookies.get_dict()
s=session.get("http:url")
print s.text
'''
requets是一个很给力的库,可能只逊色与selenium。。。。。。。。。。
auth模块处理http认证 HTTPBasicAuth对象最为auth参数传入请求
常用的js库
jquery库 jquery.min.js jquery库 动态创建网页,js代码执行之后才会产生网页
google analytics 避免被网络分析系统知道采集数据,需要确保把分析工具的cookie关掉
google 地图

var marker=new google.mps.Marker({
    position:new google.maps.LatLing(-25,2323),
    map: map
    title: "some marker text"
});

ajax 和动态html
提交表单之后,网站的页面不需要重新刷新,使用了ajax技术,节省资源,避免不必要的刷新

selenium可以打开一个浏览器,自动化的进行一系列操作,如果想要后台进行一系列操作,可以使phantomjs,

from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
from selenium import webdriver

driver=webdriver.PhantomJS(executable_path="C:/PentestBox/base/python/phantomjs.exe")
driver.get("http://pythonscraping.com/pages/javascript/ajaxDemo.html")

try:
    element=WebDriverWait(driver,10).until(EC.presence_of_element_located((By.ID,"loadedButton")))
finally:
    print driver.find_element_by_id("content").text
    driver.close()

selenium的隐式等待,还有显示等待
隐式等待experted_conditions定义,经常使用别名EC,
期望条件有很多 弹出提示框,一个元素被选中,页面的标题被改变了,一个元素消失了,或者出现了
presence_of_element_located((By.ID,"loadedButton"))
find_element

定位器By对象
ID html id CLASS_NAME CSS_SELECTOR css的id,tag,etc
LINK_TEXT (By.LINK_TEXT,"Next")
PARTIAL_LINK_TEXT 通过部分链接文字来查找
NAME html name的属性来查找
TAG_NAME html标签的名称查找
XPATH xpath表达式 beautifulsoup不支持,/div选择div节点,文档的根节点
//div选择文档的所有的div节点

服务器端的重定向可以使用urllib完成,客户端的重定向是用selenium

一个比较只能的方法来检测客户端重定向是否完成,从页面加载开始就监视dom的一个元素,重复调用这个元素知道selenium抛出stableelementreferenceexception异常,说明网页已经跳转

第十章图像识别与文字处理

tesseract text.tif textoutput|cat textoutput.txt

第十一章避开采集陷阱

1.修改请求头,http有十几个请求头,但是只有七个最常用,
host connection accept user-agent referrer accept-encoding accept-language
用来测试请求头的网站,然而人家现在付费了.....
https://www.whatismybrowser.com/developers/what-http-headers-is-my-browser-sending

大型网站提供了语言翻译,只需要把accept-language :修改一下,可以修改请求头成为移动设备就可以更简单的抓取了

处理cookie:
在一个网站持续地保持登录状态,需要保存一个cookie,editthiscookie chrome插件

想要出来google anaLytics的cookie,需要用到selenium和phantomjs包

from selenum import webdriver
driver=webdriver.PhantomJS(executable_path="")
drive.get("http://pythonscraping.com")
drive.implicitly_wait(1) 隐式等待
print driver.get_cookie()

还有delete_cookie() add_cookie() delet_all_cookie()方法处理

时间太快的请求可能会被封锁,所以使用多线程,增加时间间隔time.sleep(3)
控制采集速度23333333
Litmus 测试工具区分网络爬虫和使用浏览器的人类
表单的隐藏字段,用来阻止爬虫自动提交表单
一种是表单页面上的一个字段可以用服务器生成的随机变量来表示,方法采集随机变量,提交
二种是蜜罐 表单中包含一个普通名称的隐含字段,username,password,是个蜜罐圈套
避免蜜罐:css对用户不可见的元素,和隐藏表单元素不要填写

12.4 问题检查表
这一章介绍的大量知识,其实和这本书一样,都是在介绍如何建立一个更像人而不是更像
机器人的网络爬虫。如果你一直被网站封杀却找不到原因,那么这里有个检查列表,可以
帮你诊断一下问题出在哪里。
• 首先,如果你从网络服务器收到的页面是空白的,缺少信息,或其遇到他不符合你预期
的情况(或者不是你在浏览器上看到的内容),有可能是因为网站创建页面的 JavaScript
执行有问题。可以看看第 10 章内容。
• 如果你准备向网站提交表单或发出 POST 请求,记得检查一下页面的内容,看看你想提
交的每个字段是不是都已经填好,而且格式也正确。用 Chrome 浏览器的网络面板(快
捷键 F12 打开开发者控制台,然后点击“Network”即可看到)查看发送到网站的 POST
命令,确认你的每个参数都是正确的。
• 如果你已经登录网站却不能保持登录状态,或者网站上出现了其他的“登录状态”异常,
请检查你的 cookie。确认在加载每个页面时 cookie 都被正确调用,而且你的 cookie 在
每次发起请求时都发送到了网站上。
• 如果你在客户端遇到了 HTTP 错误,尤其是 403 禁止访问错误,这可能说明网站已经把
你的 IP 当作机器人了,不再接受你的任何请求。你要么等待你的 IP 地址从网站黑名单
里移除,要么就换个 IP 地址(可以去星巴克上网,或者看看第 14 章的内容)。如果你
确定自己并没有被封杀,那么再检查下面的内容。
♦ 确认你的爬虫在网站上的速度不是特别快。快速采集是一种恶习,会对网管的服务
器造成沉重的负担,还会让你陷入违法境地,也是 IP 被网站列入黑名单的首要原因。
避开采集陷阱 | 163
给你的爬虫增加延迟,让它们在夜深人静的时候运行。切记:匆匆忙忙写程序或收
集数据都是拙劣项目管理的表现;应该提前做好计划,避免临阵慌乱。
♦ 还有一件必须做的事情:修改你的请求头!有些网站会封杀任何声称自己是爬虫的
访问者。如果你不确定请求头的值怎样才算合适,就用你自己浏览器的请求头吧。
♦ 确认你没有点击或访问任何人类用户通常不能点击或接入的信息(更多信息请查阅
12.3.2 节)。
♦ 如果你用了一大堆复杂的手段才接入网站,考虑联系一下网管吧,告诉他们你的目的。
试试发邮件到 webmaster@< 域名 > 或 admin@< 域名 >,请求网管允许你使用爬虫采
集数据。管理员也是人嘛

13章,用爬虫测试网站

第十四章图像与文字的处理

待续-----

用python写网络爬虫笔记

4.3多线程爬虫

delay标识,用来做时间间隔,防止封ip
import threading import time
设置一个最大线程数 threading.Thread() threading.remove(thread) thread is still alive

setDaemon()设置守护进程,必须在start()方法调用之前设置,否则会被无限挂起,子线程启动之后,父线程也会启动
join方法用于阻塞父线程,只有子线程运行完了,才运行父线程
可以把python的内建队列改成给予mongodb的新队列,更新一个多进程

import multiprocessing

def process_link_crawler(args,** kwargs):
    num_cpus=multiprocesing.cpu_count()
    print "start      ".format(num_cpus)
    process=[]
    for i in range(num_cpus):
        p=multiprocessing.Process(target=threaded_crawler)
        args=[args],kwargs=kwargs
        p.start()
        process.append(p)
    for p in processes:
        p.join()

为链接爬虫添加缓存支持

linux 的文件系统是ext3/4 非法文件名是\ \0 文件名最大255字节
osx的文件系统是hfs plus :\0 255个utf-16编码单元
windows NTFS \ / ?: * "><| 255

urlparse 解析url,urlsplit componets
字符串的开头start with 结尾end with
单纯的文件缓存系统可以使用zlib.compress来压缩一下节省空间
存储时间戳用来判断数据是否过期需要删除
timedelta 对象设置默认过期时间为30天 pickle.dumps(),存入一个对象,用一个括号把一个时间戳和文件对象一起存进去就可以了,变成了序列化数据,带有一个属性是时间
timedelta类型本质上来说就是一个时间差的类型,两个时间的类型可进行加减运算

数据库的缓存

nosql数据库,这本书使用mongodb作为缓存数据库

  • nosql
    redis键值对存储,面向文档的存储mongodb,图形数据库neo4j ,列数据存储hbase
  • mongod的启动
    mongod -dbpath ./路径 启动数据库
from pymongod import MongoClient
client=MongoClient("localhost","27017")
# pymongo连接数据库

threading 多线程的控制和处理

[threading]

scrapy回调函数没有执行

scrapy 项目在pycharm中运行

scrapy 项目的调试

posted @ 2017-09-26 11:40  可乐12138  阅读(306)  评论(0编辑  收藏  举报