转载:通过分析SQL语句的执行计划优化SQL(2)

    在调整之前我们需要了解一些背景知识,只有知道这些背景知识,我们才能更好的去调整sql语句。
本节介绍了SQL语句处理的基本过程,主要包括:
·        查询语句处理 
·        DML语句处理(insert, update, delete) 
·        DDL 语句处理(create .. , drop .. , alter .. , ) 
·        事务控制(commit, rollback) 

[b]SQL 语句的执行过程(SQL Statement Execution)[/b]
             图3-1 概要的列出了处理和运行一个sql语句的需要各个重要阶段。在某些情况下,Oracle运行sql的过程可能与下面列出的各个阶段的顺序有所不同。如DEFINE阶段可能在FETCH阶段之前,这主要依赖你如何书写代码。

            对许多oracle的工具来说,其中某些阶段会自动执行。绝大多数用户不需要关心各个阶段的细节问题,然而,知道执行的各个阶段还是有必要的,这会帮助你写出更高效的SQL语句来,而且还可以让你猜测出性能差的SQL语句主要是由于哪一个阶段造成的,然后我们针对这个具体的阶段,找出解决的办法。



图 3-1  SQL语句处理的各个阶段

[b]DML语句的处理[/b]
      本节给出一个例子来说明在DML语句处理的各个阶段到底发生了什么事情。
假设你使用Pro*C程序来为指定部门的所有职员增加工资。程序已经连到正确的用户,你可以在你的程序中嵌入如下的SQL语句:
EXEC SQL UPDATE employees 
SET salary = 1.10 * salary 
            WHERE department_id = :var_department_id; 
var_department_id是程序变量,里面包含部门号,我们要修改该部门的职员的工资。当这个SQL语句执行时,使用该变量的值。
每种类型的语句都需要如下阶段:
·        第1步: Create a Cursor     创建游标
·        第2步: Parse the Statement  分析语句
·        第5步: Bind Any Variables    绑定变量
·        第7步: Run the Statement    运行语句
·        第9步: Close the Cursor     关闭游标
如果使用了并行功能,还会包含下面这个阶段:
·        第6步: Parallelize the Statement   并行执行语句
如果是查询语句,则需要以下几个额外的步骤,如图 3所示:
·        第3步: Describe Results of a Query   描述查询的结果集
·        第4步: Define Output of a Query      定义查询的输出数据
·        第8步: Fetch Rows of a Query        取查询出来的行

下面具体说一下每一步中都发生了什么事情:.
[b]第1步: 创建游标(Create a Cursor)[/b]
        由程序接口调用创建一个游标(cursor)。任何SQL语句都会创建它,特别在运行DML语句时,都是自动创建游标的,不需要开发人员干预。多数应用中,游标的创建是自动的。然而,在预编译程序(pro*c)中游标的创建,可能是隐含的,也可能显式的创建。在存储过程中也是这样的。

[b]第2步:分析语句(Parse the Statement)[/b]
       在语法分析期间,SQL语句从用户进程传送到Oracle,SQL语句经语法分析后,SQL语句本身与分析的信息都被装入到共享SQL区。在该阶段中,可以解决许多类型的错误。

语法分析分别执行下列操作:
l        翻译SQL语句,验证它是合法的语句,即书写正确
l        实现数据字典的查找,以验证是否符合表和列的定义
l        在所要求的对象上获取语法分析锁,使得在语句的语法分析过程中不改变这些对象的定义
l        验证为存取所涉及的模式对象所需的权限是否满足
l        决定此语句最佳的执行计划
l        将它装入共享SQL区
l        对分布的语句来说,把语句的全部或部分路由到包含所涉及数据的远程节点
      以上任何一步出现错误,都将导致语句报错,中止执行。

      只有在共享池中不存在等价SQL语句的情况下,才对SQL语句作语法分析。在这种情况下,数据库内核重新为该语句分配新的共享SQL区,并对语句进行语法分析。进行语法分析需要耗费较多的资源,所以要尽量避免进行语法分析,这是优化的技巧之一。

      语法分析阶段包含了不管此语句将执行多少次,而只需分析一次的处理要求。Oracle只对每个SQL语句翻译一次,在以后再次执行该语句时,只要该语句还在共享SQL区中,就可以避免对该语句重新进行语法分析,也就是此时可以直接使用其对应的执行计划对数据进行存取。这主要是通过绑定变量(bind variable)实现的,也就是我们常说的共享SQL,后面会给出共享SQL的概念。

     虽然语法分析验证了SQL语句的正确性,但语法分析只能识别在SQL语句执行之前所能发现的错误(如书写错误、权限不足等)。因此,有些错误通过语法分析是抓不到的。例如,在数据转换中的错误或在数据中的错(如企图在主键中插入重复的值)以及死锁等均是只有在语句执行阶段期间才能遇到和报告的错误或情况。

[b]查询语句的处理[/b]
      查询与其它类型的SQL语句不同,因为在成功执行后作为结果将返回数据。其它语句只是简单地返回成功或失败,而查询则能返回一行或许多行数据。查询的结果均采用表格形式,结果行被一次一行或者批量地被检索出来。从这里我们可以得知批量的fetch数据可以降低网络开销,所以批量的fetch也是优化的技巧之一。

       有些问题只与查询处理相关,查询不仅仅指SELECT语句,同样也包括在其它SQL语句中的隐含查询。例如,下面的每个语句都需要把查询作为它执行的一部分:
INSERT INTO table SELECT... 
UPDATE table SET x = y WHERE... 
DELETE FROM table WHERE... 
CREATE table AS SELECT... 
具体来说,查询
·        要求读一致性
·        可能使用回滚段作中间处理
·        可能要求SQL语句处理描述、定义和取数据阶段

[b]第3步: 描述查询结果(Describe Results of a Query)[/b]
      描述阶段只有在查询结果的各个列是未知时才需要;例如,当查询由用户交互地输入需要输出的列名。在这种情况要用描述阶段来决定查询结果的特征(数据类型,长度和名字)。

[b]第4步: 定义查询的输出数据(Define Output of a Query)  [/b]
       在查询的定义阶段,你指定与查询出的列值对应的接收变量的位置、大小和数据类型,这样我们通过接收变量就可以得到查询结果。如果必要的话,Oracle会自动实现数据类型的转换。这是将接收变量的类型与对应的列类型相比较决定的。

[b]第5步: 绑定变量(Bind Any Variables)[/b]
      此时,Oracle知道了SQL语句的意思,但仍没有足够的信息用于执行该语句。Oracle 需要得到在语句中列出的所有变量的值。在该例中,Oracle需要得到对department_id列进行限定的值。得到这个值的过程就叫绑定变量(binding variables)

      此过程称之为将变量值捆绑进来。程序必须指出可以找到该数值的变量名(该变量被称为捆绑变量,变量名实质上是一个内存地址,相当于指针)。应用的最终用户可能并没有发觉他们正在指定捆绑变量,因为Oracle 的程序可能只是简单地指示他们输入新的值,其实这一切都在程序中自动做了。

      因为你指定了变量名,在你再次执行之前无须重新捆绑变量。你可以改变绑定变量的值,而Oracle在每次执行时,仅仅使用内存地址来查找此值。

       如果Oracle 需要实现自动数据类型转换的话(除非它们是隐含的或缺省的),你还必须对每个值指定数据类型和长度。关于这些信息可以参考oracle的相关文档,如Oracle Call Interface Programmer's Guide

[b]第6步: 并行执行语句(Parallelize the Statement )[/b]
     ORACLE 可以在SELECTs, INSERTs, UPDATEs, MERGEs, DELETEs语句中执行相应并行查询操作,对于某些DDL操作,如创建索引、用子查询创建表、在分区表上的操作,也可以执行并行操作。并行化可以导致多个服务器进程(oracle server processes)为同一个SQL语句工作,使该SQL语句可以快速完成,但是会耗费更多的资源,所以除非很有必要,否则不要使用并行查询。

[b]第7步: 执行语句(Run the Statement)[/b]
      到了现在这个时候,Oracle拥有所有需要的信息与资源,因此可以真正运行SQL语句了。如果该语句为SELECT查询或INSERT语句,则不需要锁定任何行,因为没有数据需要被改变。然而,如果语句为UPDATE或DELETE语句,则该语句影响的所有行都被锁定,防止该用户提交或回滚之前,别的用户对这些数据进行修改。这保证了数据的一致性。

     对于某些语句,你可以指定执行的次数,这称为批处理(array processing)。指定执行N次,则绑定变量与定义变量被定义为大小为N的数组的开始位置,这种方法可以减少网络开销,也是优化的技巧之一。

[b]第8步: 取出查询的行(Fetch Rows of a Query)[/b]
      在fetch阶段,行数据被取出来,每个后续的存取操作检索结果集中的下一行数据,直到最后一行被取出来。上面提到过,批量的fetch是优化的技巧之一。

[b]第9步: 关闭游标(Close the Cursor)[/b]
      SQL语句处理的最后一个阶段就是关闭游标

[b]DDL语句的处理(DDL Statement Processing)[/b]
     DDL语句的执行不同与DML语句和查询语句的执行,这是因为DDL语句执行成功后需要对数据字典数据进行修改。对于DDL语句,语句的分析阶段实际上包括分析、查找数据字典信息和执行。

     事务管理语句、会话管理语句、系统管理语句只有分析与执行阶段,为了重新执行该语句,会重新分析与执行该语句。

[b]事务控制(Control of Transactions)[/b]
      一般来说,只有使用ORACLE编程接口的应用设计人员才关心操作的类型,并把相关的操作组织在一起,形成一个事务。一般来说,我门必须定义事务,这样在一个逻辑单元中的所有工作可以同时被提交或回滚,保证了数据的一致性。一个事务应该由逻辑单元中的所有必须部分组成,不应该多一个,也不应该少一个。
·        在事务开始和结束的这段时间内,所有被引用表中的数据都应该在一致的状态(或可以被回溯到一致的状态)
·        事务应该只包含可以对数据进行一致更改(one consistent change to the data)的SQL语句

      例如,在两个帐号之间的转帐(这是一个事务或逻辑工作单元),应该包含从一个帐号中借钱(由一个SQL完成),然后将借的钱存入另一个帐号(由另一个SQL完成)。这2个操作作为一个逻辑单元,应该同时成功或同时失败。其它不相关的操作,如向一个帐户中存钱,不应该包含在这个转帐事务中。

      在设计应用时,除了需要决定哪种类型的操作组成一个事务外,还需要决定使用BEGIN_DISCRETE_TRANSACTIO存储过程是否对提高小的、非分布式的事务的性能有作用。

第4章 ORACLE的优化器[/b]

        优化器有时也被称为查询优化器,这是因为查询是影响数据库性能最主要的部分,不要以为只有SELECT语句是查询。实际上,带有任何WHERE条件的DML(INSERT、UPDATE、DELETE)语句中都包含查询要求,在后面的文章中,当说到查询时,不一定只是指SELECT语句,也有可能指DML语句中的查询部分。优化器是所有关系数据库引擎中的最神秘、最富挑战性的部件之一,从性能的角度看也是最重要的部分,它性能的高低直接关系到数据库性能的好坏。

        我们知道,SQL语句同其它语言(如C语言)的语句不一样,它是非过程化(non-procedural)的语句,即当你要取数据时,不需要告诉数据库通过何种途径去取数据,如到底是通过索引取数据,还是应该将表中的每行数据都取出来,然后再通过一一比较的方式取数据(即全表扫描),这是由数据库的优化器决定的,这就是非过程化的含义,也就是说,如何取数据是由优化器决定,而不是应用开发者通过编程决定。在处理SQL的SELECT、UPDATE、INSERT或DELETE语句时,Oracle 必须访问语句所涉及的数据,Oracle的优化器部分用来决定访问数据的有效路径,使得语句执行所需的I/O和处理时间最小。

        为了实现一个查询,内核必须为每个查询定制一个查询策略,或为取出符合条件的数据生成一个执行计划(execution plan)。典型的,对于同一个查询,可能有几个执行计划都符合要求,都能得到符合条件的数据。例如,参与连接的表可以有多种不同的连接方法,这取决于连接条件和优化器采用的连接方法。为了在多个执行计划中选择最优的执行计划,优化器必须使用一些实际的指标来衡量每个执行计划使用的资源(I/0次数、CPU等),这些资源也就是我们所说的代价(cost)。如果一个执行计划使用的资源多,我们就说使用执行计划的代价大。以执行计划的代价大小作为衡量标准,优化器选择代价最小的执行计划作为真正执行该查询的执行计划,并抛弃其它的执行计划。

        在ORACLE的发展过程中,一共开发过2种类型的优化器:基于规则的优化器和基于代价的优化器。这2种优化器的不同之处关键在于:取得代价的方法与衡量代价的大小不同。现对每种优化器做一下简单的介绍:

[b]基于规则的优化器 -- Rule Based (Heuristic) Optimization(简称RBO):[/b]
        在ORACLE7之前,主要是使用基于规则的优化器。ORACLE在基于规则的优化器中采用启发式的方法(Heuristic Approach)或规则(Rules)来生成执行计划。例如,如果一个查询的where条件(where clause)包含一个谓词(predicate,其实就是一个判断条件,如”=”, “>”, ”<”等),而且该谓词上引用的列上有有效索引,那么优化器将使用索引访问这个表,而不考虑其它因素,如表中数据的多少、表中数据的易变性、索引的可选择性等。此时数据库中没有关于表与索引数据的统计性描述,如表中有多上行,每行的可选择性等。优化器也不考虑实例参数,如multi block i/o、可用排序内存的大小等,所以优化器有时就选择了次优化的计划作为真正的执行计划,导致系统性能不高。
        如,对于
        select * from emp where deptno = 10;
        这个查询来说,如果是使用基于规则的优化器,而且deptno列上有有效的索引,则会通过deptno列上的索引来访问emp表。在绝大多数情况下,这是比较高效的,但是在一些特殊情况下,使用索引访问也有比较低效的时候,现举例说明:
        1) emp表比较小,该表的数据只存放在几个数据块中。此时使用全表扫描比使用索引访问emp表反而要好。因为表比较小,极有可能数据全在内存中,所以此时做全表扫描是最快的。而如果使用索引扫描,需要先从索引中找到符合条件记录的rowid,然后再一一根据这些rowid从emp中将数据取出来,在这种条件下,效率就会比全表扫描的效率要差一些。

        2) emp表比较大时,而且deptno = 10条件能查询出表中大部分的数据如(50%)。如该表共有4000万行数据,共放在有500000个数据块中,每个数据块为8k,则该表共有约4G,则这么多的数据不可能全放在内存中,绝大多数需要放在硬盘上。此时如果该查询通过索引查询,则是你梦魇的开始。db_file_multiblock_read_count参数的值200。如果采用全表扫描,则需要500000/db_file_multiblock_read_count=500000/200=2500次I/O。但是如果采用索引扫描,假设deptno列上的索引都已经cache到内存中,所以可以将访问索引的开销忽略不计。因为要读出4000万x 50% = 2000万数据,假设在读这2000万数据时,有99.9%的命中率,则还是需要20000次I/O,比上面的全表扫描需要的2500次多多了,所以在这种情况下,用索引扫描反而性能会差很多。在这样的情况下,用全表扫描的时间是固定的,但是用索引扫描的时间会随着选出数据的增多使查询时间相应的延长。

        上面是枯燥的假设数据,现在以具体的实例给予验证:
        环境: oracle 817 + linux + 阵列柜,表SWD_BILLDETAIL有3200多万数据;
                表的id列、cn列上都有索引
        经查看执行计划,发现执行select count(id) from SWD_BILLDETAIL;使用全表扫描,执行完用了大约1.50分钟(4次执行取平均,每次分别为1.45 1.51 2.00 1.46)。而执行select count(id) from SWD_BILLDETAIL where cn <'6';却用了2个小时还没有执行完,经分析该语句使用了cn列上的索引,然后利用查询出的rowid再从表中查询数据。我为什么不使用select count(cn) from SWD_BILLDETAIL where cn <'6';呢?后面在分析执行路径的索引扫描时时会给出说明。

        下面就是基于规则的优化器使用的执行路径与各个路径对应的等级:
        RBO Path 1: Single Row by Rowid(等级最高)
        RBO Path 2: Single Row by Cluster Join
        RBO Path 3: Single Row by Hash Cluster Key with Unique or Primary Key
        RBO Path 4: Single Row by Unique or Primary Key
        RBO Path 5: Clustered Join
        RBO Path 6: Hash Cluster Key
        RBO Path 7: Indexed Cluster Key
        RBO Path 8: Composite Index
        RBO Path 9: Single-Column Indexes
        RBO Path 10: Bounded Range Search on Indexed Columns
        RBO Path 11: Unbounded Range Search on Indexed Columns
        RBO Path 12: Sort Merge Join
        RBO Path 13: MAX or MIN of Indexed Column
        RBO Path 14: ORDER BY on Indexed Column
        RBO Path 15: Full Table Scan(等级最低)

        上面的执行路径中,RBO认为越往下执行的代价越大,即等级越低。在RBO生成执行计划时,如果它发现有等级高的执行路径可用,则肯定会使用等级高的路径,而不管任何其它影响性能的元素,即RBO通过上面的路径的等级决定执行路径的代价,执行路径的等级越高,则使用该执行路径的代价越小。如上面2个例子所述,如果使用RBO,则肯定使用索引访问表,也就是选择了比较差的执行计划,这样会给数据库性能带来很大的负面影响。为了解决这个问题,从ORACLE 7开始oracle引入了基于代价的优化器,下面给出了介绍。

[b]基于代价的优化器 -- Cost Based Optimization(简称CBO)[/b]
        Oracle把一个代价引擎(Cost Engine)集成到数据库内核中,用来估计每个执行计划需要的代价,该代价将每个执行计划所耗费的资源进行量化,从而CBO可以根据这个代价选择出最优的执行计划。一个查询耗费的资源可以被分成3个基本组成部分:I/O代价、CPU代价、network代价。I/O代价是将数据从磁盘读入内存所需的代价。访问数据包括将数据文件中数据块的内容读入到SGA的数据高速缓存中,在一般情况下,该代价是处理一个查询所需要的最主要代价,所以我们在优化时,一个基本原则就是降低查询所产生的I/O总次数。CPU代价是处理在内存中数据所需要的代价,如一旦数据被读入内存,则我们在识别出我们需要的数据后,在这些数据上执行排序(sort)或连接(join)操作,这需要耗费CPU资源。

        对于需要访问跨节点(即通常说的服务器)数据库上数据的查询来说,存在network代价,用来量化传输操作耗费的资源。查询远程表的查询或执行分布式连接的查询会在network代价方面花费比较大。

        在使用CBO时,需要有表和索引的统计数据(分析数据)作为基础数据,有了这些数据,CBO才能为各个执行计划计算出相对准确的代价,从而使CBO选择最佳的执行计划。所以定期的对表、索引进行分析是绝对必要的,这样才能使统计数据反映数据库中的真实情况。否则就会使CBO选择较差的执行计划,影响数据库的性能。分析操作不必做的太频繁,一般来说,每星期一次就足够了。切记如果想使用CBO,则必须定期对表和索引进行分析。

        对于分析用的命令,随着数据库版本的升级,用的命令也发生了变换,在oracle 8i以前,主要是用ANALYZE命令。在ORACLE 8I以后,又引入了DBMS_STATS存储包来进行分析。幸运的是从ORACLE 10G以后,分析工作变成自动的了,这减轻的DBA的负担,不过在一些特殊情况下,还需要一些手工分析。

        如果采用了CBO优化器,而没有对表和索引进行分析,没有统计数据,则ORACLE使用缺省的统计数据(至少在ORACLE 9I中是这样),这可以从oracle的文档上找到。使用的缺省值肯定与系统的实际统计值不一致,这可能会导致优化器选择错误的执行计划,影响数据库的性能。

        要注意的是:虽然CBO的功能随着ORACLE新版本的推出,功能越来越强,但它不是能包治百病的神药,否则就不再需要DBA了,那我就惨了!!!实际上任何一个语句,随着硬件环境与应用数据的不同,该语句的执行计划可能需要随之发生变化,这样才能取得最好的性能。所以有时候不在具体的环境下而进行SQL性能调整是徒劳的。

        在ORACLE8I推出的时候,ORACLE极力建议大家使用CBO,说CBO有种种好处,但是在那是ORACLE开发的应用系统还是使用基于规则的优化器,从这件事上我们可以得出这样的结论:1) 如果团队的数据库水平很高而且都熟悉应用数据的特点,RBO也可以取得很好的性能。2)CBO不是很稳定,但是一个比较有前途的优化器,Oracle极力建议大家用是为了让大家尽快发现它的BUG,以便进一步改善,但是ORACLE为了对自己开发的应用系统负责,他们还是使用了比较熟悉而且成熟的RBO。从这个事情上给我们的启发就是:我们在以后的开发中,应该尽量采用我们熟悉并且成熟的技术,而不要一味的采用新技术,一味采用新技术并不一定能开发出好的产品。幸运的是从ORACLE 10G后,CBO已经足够的强大与智能,大家可以放心的使用该技术,因为ORACLE 10G后,Oracle自己开发的应用系统也使用CBO优化器了。而且ORACLE规定,从ORACLE 10G开始,开始废弃RBO优化器。这句话并不是指在ORACLE 10G中不能使用RBO,而是从ORACLE 10G开始开始,不再为RBO的BUG提供修补服务。

        在上面的第2个例子中,如果采用CBO优化器,它就会考虑emp表的行数,deptno列的统计数据,发现对该列做查询会查询出过多的数据,并且考虑db_file_multiblock_read_count参数的设置,发现用全表扫描的代价比用索引扫描的代价要小,从而使用全表扫描从而取得良好的执行性能。
        
[b]判断当前数据库使用何种优化器:[/b]
        主要是由optimizer_mode初始化参数决定的。该参数可能的取值为:first_rows_[1 | 10 | 100 | 1000] | first_rows | all_rows | choose | rule。具体解释如下:
        RULE为使用RBO优化器。
        CHOOSE则是根据实际情况,如果数据字典中包含被引用的表的统计数据,即引用的对象已经被分析,则就使用CBO优化器,否则为RBO优化器。
        ALL_ROWS为CBO优化器使用的第一种具体的优化方法,是以数据的吞吐量为主要目标,以便可以使用最少的资源完成语句。
        FIRST_ROWS为优化器使用的第二种具体的优化方法,是以数据的响应时间为主要目标,以便快速查询出开始的几行数据。
        FIRST_ROWS_[1 | 10 | 100 | 1000] 为优化器使用的第三种具体的优化方法,让优化器选择一个能够把响应时间减到最小的查询执行计划,以迅速产生查询结果的前 n 行。该参数为ORACLE 9I新引入的。

        从ORACLE V7以来,optimizer_mode参数的缺省设置应是"choose",即如果对已分析的表查询的话选择CBO,否则选择RBO。在此种设置中,如果采用了CBO,则缺省为CBO中的all_rows模式。

        注意:即使指定数据库使用RBO优化器,但有时ORACLE数据库还是会采用CBO优化器,这并不是ORACLE的BUG,主要是由于从ORACLE 8I后引入的许多新特性都必须在CBO下才能使用,而你的SQL语句可能正好使用了这些新特性,此时数据库会自动转为使用CBO优化器执行这些语句。


[b]什么是优化[/b]
       优化是选择最有效的执行计划来执行SQL语句的过程,这是在处理任何数据的语句(SELECT,INSERT,UPDATE或DELETE)中的一个重要步骤。对Oracle来说,执行这样的语句有许多不同的方法,譬如说,将随着以什么顺序访问哪些表或索引的不同而不同。所使用的执行计划可以决定语句能执行得有多快。Oracle中称之为优化器(Optimizer)的组件用来选择这种它认为最有效的执行计划。

       由于一系列因素都会会影响语句的执行,优化器综合权衡各个因素,在众多的执行计划中选择认为是最佳的执行计划。然而,应用设计人员通常比优化器更知道关于特定应用的数据特点。无论优化器多么智能,在某些情况下开发人员能选择出比优化器选择的最优执行计划还要好的执行计划。这是需要人工干预数据库优化的主要原因。事实表明,在某些情况下,确实需要DBA对某些语句进行手工优化。

注:从Oracle的一个版本到另一个版本,优化器可能对同一语句生成不同的执行计划。在将来的Oracle 版本中,优化器可能会基于它可以用的更好、更理想的信息,作出更优的决策,从而导致为语句产生更优的执行计划。
posted @ 2009-11-18 11:55  克拉玛依  阅读(197)  评论(0编辑  收藏  举报