因果推断学习1 --- Simpson's paradox - 知乎 (zhihu.com)
Bayesian Additive Regression Trees:https://zhuanlan.zhihu.com/p/444501704 & https://github.com/acgmusic/FigureBedForFmp/blob/main/BART_final.pdf
因果推断学习(github):CausalInferenceIntro/chapters at main · xieliaing/CausalInferenceIntro · GitHub
casualTree博客解释:https://towardsdatascience.com/understanding-causal-trees-920177462149
causal effects machine learning:https://medium.com/towards-data-science/causal-effects-via-regression-28cb58a2fffc 【线性回归,double machine learning,meta learning(T/S/X learner)】
uplift-modeling: https://towardsdatascience.com/uplift-modeling-e38f96b1ef60
因果推断学习书(含pdf链接):https://aleksander-molak.medium.com/yes-six-causality-books-that-will-get-you-from-zero-to-advanced-2023-f4d08718a2dd
BART简介(Bayesian Additive Regression Trees):https://zhuanlan.zhihu.com/p/444501704
使用随机森林进行因果推断:https://zhuanlan.zhihu.com/p/46803675
视频教程(因果推断):
1.斯坦福 https://www.youtube.com/playlist?list=PLxq_lXOUlvQAoWZEqhRqHNezS30lI49G-
2. Brady的:https://www.youtube.com/watch?v=CfzO4IEMVUk&list=PLoazKTcS0Rzb6bb9L508cyJ1z-U9iWkA0&index=1