python 自定义函数表达式 拟合求系数
https://docs.scipy.org/doc/scipy/reference/tutorial/integrate.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
https://blog.csdn.net/weixin_36602742/article/details/53469011
https://blog.csdn.net/changdejie/article/details/83089933
import numpy as np import matplotlib.pyplot as plt from scipy.optimize import curve_fit def func(x, a, b, c): return a * np.exp(-b * x) + c #Define the data to be fit with some noise: xdata = np.linspace(0, 4, 50) y = func(xdata, 2.5, 1.3, 0.5) np.random.seed(1729) y_noise = 0.2 * np.random.normal(size=xdata.size) ydata = y + y_noise plt.plot(xdata, ydata, 'b-', label='data') #Fit for the parameters a, b, c of the function func: popt, pcov = curve_fit(func, xdata, ydata) print popt plt.plot(xdata, func(xdata, *popt), 'r-', label='fit: a=%5.3f, b=%5.3f, c=%5.3f' % tuple(popt)) #Constrain the optimization to the region of 0 <= a <= 3, 0 <= b <= 1 and 0 <= c <= 0.5: popt, pcov = curve_fit(func, xdata, ydata, bounds=(0, [3., 1., 0.5])) print popt plt.plot(xdata, func(xdata, *popt), 'g--', label='fit: a=%5.3f, b=%5.3f, c=%5.3f' % tuple(popt)) plt.xlabel('x') plt.ylabel('y') plt.legend() plt.show()
其他案例学习 https://docs.scipy.org/doc/scipy/reference/index.html