Spark Deploy 模块

Spark Scheduler 模块的文章中,介绍到 Spark 将底层的资源管理和上层的任务调度分离开来,一般而言,底层的资源管理会使用第三方的平台,如 YARN 和 Mesos。为了方便用户测试和使用,Spark 也单独实现了一个简单的资源管理平台,也就是本文介绍的 Deploy 模块。

一些有经验的读者已经使用过该功能。

本文参考:http://jerryshao.me/architecture/2013/04/30/Spark%E6%BA%90%E7%A0%81%E5%88%86%E6%9E%90%E4%B9%8B-deploy%E6%A8%A1%E5%9D%97/

Spark RPC 的实现

细心的读者在阅读 Scheduler 相关代码时,已经注意到很多地方使用了 RPC 的方式通讯,比如 driver 和 executor 之间传递消息。

在旧版本的 Spark 中,直接使用了 akka.Actor 作为并发通讯的基础。很多模块是继承于 akka.Actor 的。为了剥离对 akka 的依赖性, Spark 抽象出一个独立的模块,org.apache.spark.rpc。里面定义了 RpcEndpoint 和 RpcEndpointRef,与 Actor 和 ActorRef 的意义和作用一模一样。并且该 RPC 模块仅有一个实现 org.apache.spark.rpc.akka。所以其通讯方式依然使用了 akka。优势是接口已经抽象出来,随时可以用其他方案替换 akka。

Spark 的风格似乎就是这样,什么都喜欢自己实现,包括调度、存储、shuffle,和刚推出的 Tungsten 项目(自己管理内存,而非 JVM 托管)。

Deploy 模块的整体架构

deploy 木块主要包括三个模块:master, worker, client。

Master:集群的管理者,接受 worker 的注册,接受 client 提交的 application,调度所有的 application。

Worker:一个 worker 上有多个 ExecutorRunner,这些 executor 是真正运行 task 的地方。worker 启动时,会向 master 注册自己。

Client:向 master 提交和监控 application。

代码详解

启动 master 和 worker

object org.apache.spark.deploy.master.Master 中,有 master 启动的 main 函数:

private[deploy] object Master extends Logging {
  val SYSTEM_NAME = "sparkMaster"
  val ENDPOINT_NAME = "Master"

  def main(argStrings: Array[String]) {
    SignalLogger.register(log)
    val conf = new SparkConf
    val args = new MasterArguments(argStrings, conf)
    val (rpcEnv, _, _) = startRpcEnvAndEndpoint(args.host, args.port, args.webUiPort, conf)
    rpcEnv.awaitTermination()
  }

  def startRpcEnvAndEndpoint(
      host: String,
      port: Int,
      webUiPort: Int,
      conf: SparkConf): (RpcEnv, Int, Option[Int]) = {
    val securityMgr = new SecurityManager(conf)
    val rpcEnv = RpcEnv.create(SYSTEM_NAME, host, port, conf, securityMgr)
    val masterEndpoint = rpcEnv.setupEndpoint(ENDPOINT_NAME,
      new Master(rpcEnv, rpcEnv.address, webUiPort, securityMgr, conf)) // 启动 Master 和 master RPC
    val portsResponse = masterEndpoint.askWithRetry[BoundPortsResponse](BoundPortsRequest)
    (rpcEnv, portsResponse.webUIPort, portsResponse.restPort)
  }
}

这里最主要的一行是:

    val masterEndpoint = rpcEnv.setupEndpoint(ENDPOINT_NAME,
      new Master(rpcEnv, rpcEnv.address, webUiPort, securityMgr, conf)) // 启动 Master 的 RPC

Master 继承于 RpcEndpoint,所以这里启动工作,都是在 Master.onStart 中完成,主要是启动了 restful 的 http 服务,用于展示状态。

 

object org.apache.spark.deploy.worker.Worker 中,有 worker 启动的 main 函数:

private[deploy] object Worker extends Logging {
  val SYSTEM_NAME = "sparkWorker"
  val ENDPOINT_NAME = "Worker"

  // 需要传入 master 的 url
  def main(argStrings: Array[String]) {
    SignalLogger.register(log)
    val conf = new SparkConf
    val args = new WorkerArguments(argStrings, conf)
    val rpcEnv = startRpcEnvAndEndpoint(args.host, args.port, args.webUiPort, args.cores,
      args.memory, args.masters, args.workDir)
    rpcEnv.awaitTermination()
  }

  def startRpcEnvAndEndpoint(
      host: String,
      port: Int,
      webUiPort: Int,
      cores: Int,
      memory: Int,
      masterUrls: Array[String],
      workDir: String,
      workerNumber: Option[Int] = None,
      conf: SparkConf = new SparkConf): RpcEnv = {

    // The LocalSparkCluster runs multiple local sparkWorkerX RPC Environments
    val systemName = SYSTEM_NAME + workerNumber.map(_.toString).getOrElse("")
    val securityMgr = new SecurityManager(conf)
    val rpcEnv = RpcEnv.create(systemName, host, port, conf, securityMgr)
    val masterAddresses = masterUrls.map(RpcAddress.fromSparkURL(_))
    rpcEnv.setupEndpoint(ENDPOINT_NAME, new Worker(rpcEnv, webUiPort, cores, memory,
      masterAddresses, systemName, ENDPOINT_NAME, workDir, conf, securityMgr)) // 启动 Worker
    rpcEnv
  }
  ...
}

worker 启动方式与 master 非常相似。然后

override def onStart() {
  assert(!registered)
  createWorkDir()  // 创建工作目录
  shuffleService.startIfEnabled() // 启动 shuffle 服务
  webUi = new WorkerWebUI(this, workDir, webUiPort) // 驱动 web 服务
  webUi.bind()
  registerWithMaster()  // 向 master 注册自己

  metricsSystem.registerSource(workerSource) // 这侧 worker 的资源
  metricsSystem.start()
  metricsSystem.getServletHandlers.foreach(webUi.attachHandler)
}
private def registerWithMaster() {
  registrationRetryTimer match {
    case None =>
      registered = false
      registerMasterFutures = tryRegisterAllMasters()
      connectionAttemptCount = 0
      registrationRetryTimer = Some(forwordMessageScheduler.scheduleAtFixedRate( // 不断向 master 注册,直到成功
        new Runnable {
          override def run(): Unit = Utils.tryLogNonFatalError {
            self.send(ReregisterWithMaster)
          }
        },
        INITIAL_REGISTRATION_RETRY_INTERVAL_SECONDS,
        INITIAL_REGISTRATION_RETRY_INTERVAL_SECONDS,
        TimeUnit.SECONDS))
    ...
  }
}


override def receive: PartialFunction[Any, Unit] = {
  case RegisteredWorker(masterRef, masterWebUiUrl) =>  // master 告知 worker 已经注册成功
    logInfo("Successfully registered with master " + masterRef.address.toSparkURL)
    registered = true
    changeMaster(masterRef, masterWebUiUrl)
    forwordMessageScheduler.scheduleAtFixedRate(new Runnable { // worker 不断向 master 发送心跳
      override def run(): Unit = Utils.tryLogNonFatalError {
        self.send(SendHeartbeat)
      }
    }, 0, HEARTBEAT_MILLIS, TimeUnit.MILLISECONDS)
  ...
}

如此,master 和 worker 使用心跳的方式一直保持连接。

 

这里有两个 client,一是 org.apache.spark.deploy.Client,这个是我们 spark-submit 使用的 client,另外一个是 org.apache.spark.deploy.client.AppClient,这是用户 application 中启动的 client,也是本文介绍的 client。

client 提交 application

在 Spark Sceduler 模块中,我们有提到 AppClient 是在 SparkDeploySchedulerBackend 中被创建的,而 SparkDeploySchedulerBackend 是在 SparkContext 中被创建的。

// SparkDeploySchedulerBackend.scala
override def start() {
  super.start()

  // The endpoint for executors to talk to us
  val driverUrl = rpcEnv.uriOf(SparkEnv.driverActorSystemName,
      RpcAddress(sc.conf.get("spark.driver.host"), sc.conf.get("spark.driver.port").toInt),
      CoarseGrainedSchedulerBackend.ENDPOINT_NAME)
  val args = Seq(
    "--driver-url", driverUrl,
    "--executor-id", "{{EXECUTOR_ID}}",
    "--hostname", "{{HOSTNAME}}",
    "--cores", "{{CORES}}",
    "--app-id", "{{APP_ID}}",
    "--worker-url", "{{WORKER_URL}}")  
  ....
  val command = Command("org.apache.spark.executor.CoarseGrainedExecutorBackend",
      args, sc.executorEnvs, classPathEntries ++ testingClassPath, libraryPathEntries, javaOpts)
  val appDesc = new ApplicationDescription(sc.appName, maxCores, sc.executorMemory,
      command, appUIAddress, sc.eventLogDir, sc.eventLogCodec, coresPerExecutor)
  client = new AppClient(sc.env.rpcEnv, masters, appDesc, this, conf)
  client.start()
  waitForRegistration()
}

这里的创建了一个 client:AppClient,它会连接到 masters(spark://master:7077) 上,具体是在 AppClient.start 方法中:

def start() {
  // Just launch an rpcEndpoint; it will call back into the listener.
  endpoint = rpcEnv.setupEndpoint("AppClient", new ClientEndpoint(rpcEnv))
}

ClientEndpoint 是一个 RpcEndpoint 的子类,被创建是会调用 onStart 方法,该方法向 master 注册自己,并提交新的 application 请求:

private def tryRegisterAllMasters(): Array[JFuture[_]] = {
  for (masterAddress <- masterRpcAddresses) yield {
    registerMasterThreadPool.submit(new Runnable {
      override def run(): Unit = try {
        if (registered) {
          return
        }
        val masterRef = rpcEnv.setupEndpointRef(Master.SYSTEM_NAME, masterAddress, Master.ENDPOINT_NAME)
        masterRef.send(RegisterApplication(appDescription, self)) // 向 master 发送 application 的注册请求,并且 appDescription 包含如何启动 executor 的命令
    ...

当 Master 接受到这个消息:

case RegisterApplication(description, driver) => {
  if (state == RecoveryState.STANDBY) {
  } else {
    logInfo("Registering app " + description.name)
    val app = createApplication(description, driver)
    registerApplication(app) // 加入等待列表
    logInfo("Registered app " + description.name + " with ID " + app.id)
    persistenceEngine.addApplication(app)
    driver.send(RegisteredApplication(app.id, self)) // 返回注册成功的消息
    schedule() // 调度资源和 application
  }
}

schedule 是 master 最核心的方法,即资源调度和分配,这里的资源是指 CPU(core) 数量和内存大小。

首先是把存在的 driver 的任务尽可能运行起来:

private def schedule(): Unit = {
  if (state != RecoveryState.ALIVE) { return }
  val shuffledWorkers = Random.shuffle(workers) // Randomization helps balance drivers
  for (worker <- shuffledWorkers if worker.state == WorkerState.ALIVE) {
    for (driver <- waitingDrivers) {
      if (worker.memoryFree >= driver.desc.mem && worker.coresFree >= driver.desc.cores) {
        launchDriver(worker, driver) // 首先把 driver 的任务启动起来
        waitingDrivers -= driver
      }
    }
  }
  startExecutorsOnWorkers()
}

然后给每个 application 分配 executor:

private def startExecutorsOnWorkers(): Unit = {
  // Right now this is a very simple FIFO scheduler. We keep trying to fit in the first app
  // in the queue, then the second app, etc.
  for (app <- waitingApps if app.coresLeft > 0) {
    val coresPerExecutor: Option[Int] = app.desc.coresPerExecutor
    // Filter out workers that don't have enough resources to launch an executor
    val usableWorkers = workers.toArray.filter(_.state == WorkerState.ALIVE)
      .filter(worker => worker.memoryFree >= app.desc.memoryPerExecutorMB &&
        worker.coresFree >= coresPerExecutor.getOrElse(1))
      .sortBy(_.coresFree).reverse
    // 在满足内存和cpu条件的 worker 中选择一些 executor
    val assignedCores = scheduleExecutorsOnWorkers(app, usableWorkers, spreadOutApps)

    // Now that we've decided how many cores to allocate on each worker, let's allocate them
    for (pos <- 0 until usableWorkers.length if assignedCores(pos) > 0) {
      allocateWorkerResourceToExecutors(
        app, assignedCores(pos), coresPerExecutor, usableWorkers(pos))
    }
  }
}

// 给一个 worker 调度一些 executors
private def allocateWorkerResourceToExecutors(
    app: ApplicationInfo,
    assignedCores: Int,
    coresPerExecutor: Option[Int],
    worker: WorkerInfo): Unit = {
  val numExecutors = coresPerExecutor.map { assignedCores / _ }.getOrElse(1)
  val coresToAssign = coresPerExecutor.getOrElse(assignedCores)
  for (i <- 1 to numExecutors) {
    val exec = app.addExecutor(worker, coresToAssign)
    launchExecutor(worker, exec)
    app.state = ApplicationState.RUNNING
  }
}

// 发送注册信息
private def launchExecutor(worker: WorkerInfo, exec: ExecutorDesc): Unit = {
  worker.addExecutor(exec) // master 端记录 worker 状态
  worker.endpoint.send(LaunchExecutor(masterUrl,
    exec.application.id, exec.id, exec.application.desc, exec.cores, exec.memory)) // 向 worker 端 rpc 发送注册信息
  exec.application.driver.send(ExecutorAdded(
    exec.id, worker.id, worker.hostPort, exec.cores, exec.memory)) // 向 driver 端 rpc 发送注册信息
}

Worker 在接收到消息,会创建一个 ExecutorRunner,并向 master 更新 executor 信息。

case LaunchExecutor(masterUrl, appId, execId, appDesc, cores_, memory_) =>
  val manager = new ExecutorRunner(
          appId,
          execId,
          appDesc.copy(command = Worker.maybeUpdateSSLSettings(appDesc.command, conf)),
          cores_,
          memory_,
          self,
          workerId,
          host,
          webUi.boundPort,
          publicAddress,
          sparkHome,
          executorDir,
          workerUri,
          conf,
          appLocalDirs, ExecutorState.LOADING)
        executors(appId + "/" + execId) = manager
        manager.start()
        coresUsed += cores_
        memoryUsed += memory_
        sendToMaster(ExecutorStateChanged(appId, execId, manager.state, None, None))

ExecutorRunner.start 启动一个独立线程,具体的 task 运算逻辑:

private def fetchAndRunExecutor() {
  try {
    val builder = CommandUtils.buildProcessBuilder(appDesc.command, new SecurityManager(conf),
      memory, sparkHome.getAbsolutePath, substituteVariables) // 新进程的准备工作
    val command = builder.command()
    logInfo("Launch command: " + command.mkString("\"", "\" \"", "\""))

    builder.directory(executorDir)
    builder.environment.put("SPARK_EXECUTOR_DIRS", appLocalDirs.mkString(File.pathSeparator))
    builder.environment.put("SPARK_LAUNCH_WITH_SCALA", "0")

    // Add webUI log urls
    val baseUrl =
      s"http://$publicAddress:$webUiPort/logPage/?appId=$appId&executorId=$execId&logType="
    builder.environment.put("SPARK_LOG_URL_STDERR", s"${baseUrl}stderr")
    builder.environment.put("SPARK_LOG_URL_STDOUT", s"${baseUrl}stdout")

    process = builder.start() // 启动一个新的进程执行 application 的 task
    val header = "Spark Executor Command: %s\n%s\n\n".format(
      command.mkString("\"", "\" \"", "\""), "=" * 40)

    // Redirect its stdout and stderr to files
    val stdout = new File(executorDir, "stdout")
    stdoutAppender = FileAppender(process.getInputStream, stdout, conf) // 绑定 process 的标准输入

    val stderr = new File(executorDir, "stderr")
    Files.write(header, stderr, UTF_8)
    stderrAppender = FileAppender(process.getErrorStream, stderr, conf) // 绑定 process 的标准错误输出

    // Wait for it to exit; executor may exit with code 0 (when driver instructs it to shutdown)
    // or with nonzero exit code
    val exitCode = process.waitFor() // 等待线程执行完毕
    state = ExecutorState.EXITED
    val message = "Command exited with code " + exitCode
    worker.send(ExecutorStateChanged(appId, execId, state, Some(message), Some(exitCode))) // 通知 worker 任务结束,worker会收回一些资源,并通知 master 任务结束
  } catch {
    case interrupted: InterruptedException => {
      logInfo("Runner thread for executor " + fullId + " interrupted")
      state = ExecutorState.KILLED
      killProcess(None)
    }
    case e: Exception => {
      logError("Error running executor", e)
      state = ExecutorState.FAILED
      killProcess(Some(e.toString))
    }
  }
}

application 结束

如果 application 是非正常原因被杀掉,master 会调用 handleKillExecutors,于是 master 通知 worker 杀掉 executor,executor 又interrupt 其内部进程,各个组件分别收回各自的资源。这个步骤 与http://jerryshao.me/architecture/2013/04/30/Spark%E6%BA%90%E7%A0%81%E5%88%86%E6%9E%90%E4%B9%8B-deploy%E6%A8%A1%E5%9D%97/ 描述是一模一样的。

总结

至此,对于 Spark 自身的 Deploy 介绍已经完毕。这个模块相对简单,因为只是一个简单的资源管理系统,应该也不会被用于实际的生产环境中。不过读懂 Spark 的资源管理器,对于一些不熟悉 YARN 和 Mesos 的同学,还是很有学习意义的。

posted @ 2015-10-06 13:16  徐软件  阅读(474)  评论(0编辑  收藏  举报