Security and Cryptography in Python - Public Key Encryption Systems - RSA(2)
Security and Cryptography in Python - Public Key Encryption Systems - RSA(2)
The security of RSA and Implement an Attack
import math
import random
def is_prime(p):
for i in range(2, math.isqrt(p)):
if p % i == 0:
return False
return True
def get_prime(size):
while True:
p = random.randrange(size, 2*size)
if is_prime(p):
return p
def lcm(a, b):
return a*b//math.gcd(a, b)
def get_e(lambda_n):
for e in range(2, lambda_n):
if math.gcd(e, lambda_n) == 1:
return e
return False
def get_d(e, lambda_n):
for d in range(2, lambda_n):
if d*e % lambda_n == 1:
return d
return False
def factor(n):
for p in range(2, n):
if n % p == 0:
return p, n//p
# Key generation done by Alice (secret)
# Step 1: Generate two distinct primes
size = 300
p = get_prime(size)
q = get_prime(size)
print("Generated primes", p, q)
# Step 2: compute n = p*q
n = p*q
print("Modulus n:", n)
# Step 3: Compute lambda(n) (lcm(n) = λ(n) = lcm(λ(p),λ(q)), λ(p) = p − 1, lcm(a,b) = |ab|/gcd(a,b))
lambda_n = lcm(p-1, q-1)
print("Lambda n", lambda_n)
# Step 4: Choose an integer e such that 1 < e < λ(n) and gcd(e, λ(n)) = 1
e = get_e(lambda_n)
print("Public exponent", e)
# Step 5: solve for d the equation d⋅e ≡ 1 (mod λ(n))
d = get_d(e, lambda_n)
print("Secret exponent", d)
# Done with key generation.
print("Public key (e, n):", e, n)
print("Secret key(d)", d)
# This is Bob wanting to send a message
m = 117
c = m**e % n
print("Bob sends", c)
# This is Alice decrypting the cipher
m = c**d % n
print("Alice message", m)
# This is Eve
# Integer factorization and RSA problem
print("Eve sees the following:")
print(" Public key(e,n)", e, n)
print(" Encrypted cipher", c)
p, q = factor(n)
print("Eve: Factors", p, q)
lambda_n = lcm(p-1, q-1)
print("Eve: Lambda n", lambda_n)
d = get_d(e, lambda_n)
print("Eve: Secret exponent", d)
m = c**d % n
print("Eve: message", m)
Running Result:
相信未来 - 该面对的绝不逃避,该执著的永不怨悔,该舍弃的不再留念,该珍惜的好好把握。