Python for Data Science - Extreme value analysis using univariate methods

Chapter 5 - Outlier Analysis

Segment 8 - Extreme value analysis using univariate methods

import numpy as np
import pandas as pd

import matplotlib.pyplot as plt
from pylab import rcParams
%matplotlib inline
rcParams['figure.figsize'] = 5,4
address = '~/Data/iris.data.csv'
df = pd.read_csv(filepath_or_buffer=address, header=None, sep=',')

df.columns=['Sepal Length','Sepal Width','Petal Length','Petal Width', 'Species']
X = df.iloc[:,0:4].values
y = df.iloc[:,4].values
df[:5]
Sepal Length Sepal Width Petal Length Petal Width Species
0 5.1 3.5 1.4 0.2 setosa
1 4.9 3.0 1.4 0.2 setosa
2 4.7 3.2 1.3 0.2 setosa
3 4.6 3.1 1.5 0.2 setosa
4 5.0 3.6 1.4 0.2 setosa

Identifying outliers from Tukey boxplots

df.boxplot(return_type='dict')
plt.plot()
[]

png

Sepal_Width = X[:,1]
iris_outliers = (Sepal_Width > 4)
df[iris_outliers]
Sepal Length Sepal Width Petal Length Petal Width Species
15 5.7 4.4 1.5 0.4 setosa
32 5.2 4.1 1.5 0.1 setosa
33 5.5 4.2 1.4 0.2 setosa
Sepal_Width = X[:,1]
iris_outliers = (Sepal_Width < 2.05)
df[iris_outliers]
Sepal Length Sepal Width Petal Length Petal Width Species
60 5.0 2.0 3.5 1.0 versicolor

Applying Tukey outlier labeling

pd.options.display.float_format = '{:.1f}'.format
X_df = pd.DataFrame(X)
print(X_df.describe())
          0     1     2     3
count 150.0 150.0 150.0 150.0
mean    5.8   3.1   3.8   1.2
std     0.8   0.4   1.8   0.8
min     4.3   2.0   1.0   0.1
25%     5.1   2.8   1.6   0.3
50%     5.8   3.0   4.3   1.3
75%     6.4   3.3   5.1   1.8
max     7.9   4.4   6.9   2.5
posted @ 2021-01-16 16:13  晨风_Eric  阅读(137)  评论(0编辑  收藏  举报