数学规划模型

线性规划的一般形式

 

 数学规划的分类#

1、线性规划:如果目标函数f(x)的约束条件均是决策变量的线性表达式、#

2、非线性规划:当目标函数f(x)或者约束条件中有一个是决策变量x的非线性表达式。#

3、整数规划:一类要求变量取整数值的数学规划。线性整数规划#

4、0-1规划:整数变量的取值只能为0和1#

线性规划问题的求解

 

 Matlab 求解线性规划的函数#

1、根据题目给的最值问题进行分析,写出符合题意要求的线性规划模型。

2、将模型转化为MATLAB标准化模型

  1. 列出决策变量,看总共有多少个决策变量,将每个变量前的系数写出来
  2. 找不等式约束前的常数项和后面的常数
  3. 找等式约束前的常数项和后面的常数
  4. 找出最大值和最小值的临界值

3、将找到的数值代入MATLAB

[x fval] = linprog(c, A, b, Aeq, beq, lb,ub

)

[x fval] = linprog(c, A, b, Aeq, beq, lb,ub, x0)#

c是目标函数的系数向量
A是不等式约束Ax<=b的系数矩阵
b是不等式约束Ax<=b的常数项#

Aeq是等式约束Aeq x=beq的系数矩阵,beq是等式约束Aeq x=beq的常数项#

 #

复制代码
%% Matlab求解线性规划
% [x fval] = linprog(c, A, b, Aeq, beq, lb,ub, x0)  
% c是目标函数的系数向量,A是不等式约束Ax<=b的系数矩阵,b是不等式约束Ax<=b的常数项
% Aeq是等式约束Aeq x=beq的系数矩阵,beq是等式约束Aeq x=beq的常数项
% lb是X的下限,ub是X的上限,X是向量[x1,x2,...xn]' , 即决策变量。
% 迭代的初始值为x0(一般不用给)
% 更多该函数的用法说明请看讲义

%% 例题1
c = [-5 -4 -6]';  % 加单引号表示转置
% c = [-5 -4 -6];  % 写成行向量也是可以的,不过不推荐,我们按照标准型来写看起来比较正规
A = [1 -1 1;
        3 2 4;
        3 2 0];
b = [20 42 30]';   
lb = [0 0 0]'; 
[x fval] = linprog(c, A, b, [], [], lb)  % ub我们直接不写,则意味着没有上界的约束
% x =
%          0
%    15.0000
%     3.0000
% 
% fval =
%    -78
复制代码

最大化问题需要提前改成最小化问题#

 

复制代码
%% 例题3
c = [-2 -3 5]';
A = [-2 5 -1;
          1 3 1];
b = [-10 12];
Aeq = ones(1,3);
beq = 7;
lb = zeros(3,1);
[x fval] = linprog(c, A, b, Aeq, beq, lb)
fval = -fval % 注意这个fval要取负号(原来是求最大值,我们添加负号变成了最小值问题)
% x =
%     6.4286
%     0.5714
%          0
% fval =
%   -14.5714
% fval =
%    14.5714
复制代码

典型例题代码#

复制代码
%% 生产决策问题
format long g   %可以将Matlab的计算结果显示为一般的长数字格式(默认会保留四位小数,或使用科学计数法)
% (1) 系数向量
c = zeros(9,1); % 初始化目标函数的系数向量全为0
c(1) = 1.25 -0.25 -300/6000*5;  % x1前面的系数是c1
c(2) = 1.25 -0.25 -321/10000*7;
c(3) = -250 / 4000 * 6;
c(4)  = -783/7000*4;
c(5) = -200/4000 * 7;
c(6) = -300/6000*10;
c(7) = -321 / 10000 * 9;
c(8) = 2-0.35-250/4000*8;
c(9) = 2.8-0.5-321/10000*12-783/7000*11;
c = -c;  % 我们求的是最大值,所以这里需要改变符号
% (2) 不等式约束
A = zeros(5,9);
A(1,1) = 5;  A(1,6) = 10;
A(2,2) = 7;  A(2,7) = 9; A(2,9) = 12;
A(3,3) = 6;  A(3,8) = 8;
A(4,4) = 4;  A(4,9) = 11;
A(5,5) = 7;  
b = [6000 10000 4000 7000 4000]';
% (3) 等式约束
Aeq = [1 1 -1 -1 -1 0 0 0 0;
            0 0 0 0 0 1 1 -1 0];
beq = [0 0]';%加上'代表是列向量
%(4)上下界
lb = zeros(9,1);
% 进行求解
[x fval] = linprog(c, A, b, Aeq, beq, lb)
fval = -fval
% fval =
%           1146.56650246305
复制代码
复制代码
%投料问题
format long g   %可以将Matlab的计算结果显示为一般的长数字格式(默认会保留四位小数,或使用科学计数法)
% (1) 系数向量
a=[1.25  8.75  0.5  5.75  3  7.25];  % 工地的横坐标
b=[1.25  0.75  4.75    5  6.5  7.25];   % 工地的纵坐标
x = [5  2];  % 料场的横坐标
y = [1  7];  % 料场的纵坐标
c = [];  % 初始化用来保存工地和料场距离的向量 (这个向量就是我们的系数向量)
for  j =1:2
    for i = 1:6
        c = [c;  sqrt( (a(i)-x(j))^2 + (b(i)-y(j))^2)];  % 每循环一次就在c的末尾插入新的元素
    end
end
% (2) 不等式约束
A =zeros(2,12);
A(1,1:6) = 1;
A(2,7:12) = 1;
b = [20,20]';
% (3) 等式约束
Aeq = zeros(6,12);  
for i = 1:6
    Aeq(i,i) = 1;  Aeq(i,i+6) = 1;
end
% Aeq = [eye(6),eye(6)]  % 两个单位矩阵横着拼起来
beq = [3 5 4 7 6 11]';  % 每个工地的日需求量
%(4)上下界
lb = zeros(12,1);

% 进行求解
[x fval] = linprog(c, A, b, Aeq, beq, lb)
x = reshape(x,6,2)  % 将x变为6行2列便于观察(reshape函数是按照列的顺序进行转换的,也就是第一列读完,读第二列,即x1对应x_1,1,x2对应x_2,1
复制代码

整数规划

整数规划:在线性规划的基础上 , 加⼊的决策变量需要取整数#

 [x,fval] = intlinprog(c,intcon,A,b,Aeq,beq,lb,ub)#

复制代码
%% 背包问题(货车运送货物的问题)
c = -[540 200 180 350 60 150 280 450 320 120];  % 目标函数的系数矩阵(最大化问题记得加负号)
intcon=[1:10];  % 整数变量的位置(一共10个决策变量,均为0-1整数变量)
A = [6 3 4 5 1 2 3 5 4 2];  b = 30;   % 线性不等式约束的系数矩阵和常数项向量(物品的重量不能超过30)
Aeq = []; beq =[];  % 不存在线性等式约束
lb = zeros(10,1);  % 约束变量的范围下限
ub = ones(10,1);  % 约束变量的范围上限
%最后调用intlinprog()函数
[x,fval]=intlinprog(c,intcon,A,b,Aeq,beq,lb,ub)
fval = -fval
复制代码
复制代码
%% 指派问题(选择队员去进行游泳接力比赛)
clear;clc
c = [66.8 75.6 87 58.6 57.2 66 66.4 53 78 67.8 84.6 59.4 70 74.2 69.6 57.2 67.4 71 83.8 62.4]';  % 目标函数的系数矩阵(先列后行的写法)
intcon = [1:20];  % 整数变量的位置(一共20个决策变量,均为0-1整数变量)
% 线性不等式约束的系数矩阵和常数项向量(每个人只能入选四种泳姿之一,一共五个约束)
A = [1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;
       0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0;
       0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0;
       0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0;
       0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1];
% A = zeros(5,20);
% for i = 1:5
%     A(i, (4*i-3): 4*i) = 1;
% end
b = [1;1;1;1;1];
% 线性等式约束的系数矩阵和常数项向量 (每种泳姿有且仅有一人参加,一共四个约束)
Aeq = [1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0;
          0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0;
          0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0;
          0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1];
% Aeq = [eye(4),eye(4),eye(4),eye(4),eye(4)];  % 或者写成 repmat(eye(4),1,5)  
beq = [1;1;1;1];
lb = zeros(20,1);  % 约束变量的范围下限
ub = ones(20,1);  % 约束变量的范围上限
%最后调用intlinprog()函数
[x,fval] = intlinprog(c,intcon,A,b,Aeq,beq,lb,ub)
% reshape(x,4,5)'
%      0     0     0     1    甲自由泳
%      1     0     0     0    乙蝶泳
%      0     1     0     0    丙仰泳
%      0     0     1     0    丁蛙泳
%      0     0     0     0    戊不参加
复制代码

 灵敏度分析

 

 

作者:keep--fighting

出处:https://www.cnblogs.com/keep--fighting/p/15225050.html

版权:本作品采用「署名-非商业性使用-相同方式共享 4.0 国际」许可协议进行许可。

posted @   ⭐⭐-fighting⭐⭐  阅读(416)  评论(0编辑  收藏  举报
编辑推荐:
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
阅读排行:
· winform 绘制太阳,地球,月球 运作规律
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· AI 智能体引爆开源社区「GitHub 热点速览」
· 写一个简单的SQL生成工具
· Manus的开源复刻OpenManus初探
more_horiz
keyboard_arrow_up light_mode palette
选择主题
menu
点击右上角即可分享
微信分享提示