网络流24题(07)试题库问题(二分图多重匹配 + 最大流)
题意:
假设一个试题库中有 n 道试题。每道试题都标明了所属类别。同一道题可能有多个类别属性。
现要从题库中抽取 m 道题组成试卷。并要求试卷包含指定类型的试题。试设计一个满足要求的组卷算法。
思路:
1. 试卷和属性分别定义为 X, Y 集。每个试卷有多重属性,则由试卷分别向属性引弧,容量为 1,s 向 X 引弧容量为 1,Y 向 t 引弧,容量为需要的数量;
2. 求上面二分图的最大流即可。如果最大流等于需要选择出来的总试题数 m,则存在方案,输出即可;否而输出 No solution.
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <queue>
#include <vector>
using namespace std;
const int MAXN = 1050;
const int INFS = 0x3FFFFFFF;
struct edge {
int from, to, cap, flow;
edge(int _from, int _to, int _cap, int _flow)
: from(_from), to(_to), cap(_cap), flow(_flow) {}
};
class Dinic {
public:
void initdata(int n, int s, int t) {
this->n = n, this->s = s, this->t = t;
edges.clear();
for (int i = 0; i < n; i++)
G[i].clear();
}
void addedge(int u, int v, int cap) {
edges.push_back(edge(u, v, cap, 0));
edges.push_back(edge(v, u, 0, 0));
G[u].push_back(edges.size() - 2);
G[v].push_back(edges.size() - 1);
}
bool BFS() {
for (int i = 0; i < n; i++)
vis[i] = false, d[i] = 0;
queue<int> Q;
Q.push(s);
vis[s] = true;
while (!Q.empty()) {
int x = Q.front(); Q.pop();
for (int i = 0; i < G[x].size(); i++) {
edge& e = edges[G[x][i]];
if (e.cap > e.flow && !vis[e.to]) {
vis[e.to] = true;
d[e.to] = d[x] + 1;
Q.push(e.to);
}
}
}
return vis[t];
}
int DFS(int x, int aug) {
if (x == t || aug == 0) return aug;
int flow = 0;
for (int i = 0; i < G[x].size(); i++) {
edge& e = edges[G[x][i]];
if (d[e.to] == d[x] + 1) {
int f = DFS(e.to, min(aug, e.cap - e.flow));
if (f <= 0) continue;
e.flow += f;
edges[G[x][i]^1].flow -= f;
flow += f;
aug -= f;
if (aug == 0) break;
}
}
return flow;
}
int maxflow() {
int flow = 0;
while (BFS()) {
flow += DFS(s, INFS);
}
return flow;
}
void getans(int p, vector<int>& ans) {
ans.clear();
for (int i = 0; i < G[p].size(); i++) {
edge& e = edges[G[p][i]^1];
if (e.to == p && e.flow == 1)
ans.push_back(e.from);
}
sort(ans.begin(), ans.end());
}
private:
vector<edge> edges;
vector<int> G[MAXN];
int n, s, t, d[MAXN];
bool vis[MAXN];
};
Dinic dc;
int main() {
int k, n;
scanf("%d%d", &k, &n);
int s = 0, t = k + n + 1;
dc.initdata(t + 1, s, t);
int sum = 0;
for (int i = 1; i <= k; i++) {
int a;
scanf("%d", &a);
sum += a;
dc.addedge(i + n, t, a);
}
for (int i = 1; i <= n; i++) {
int p, a;
scanf("%d", &p);
for (int j = 0; j < p; j++) {
scanf("%d", &a);
dc.addedge(i, a + n, 1);
}
dc.addedge(s, i, 1);
}
int flow = dc.maxflow();
if (flow == sum) {
vector<int> ans;
for (int i = 1; i <= k; i++) {
dc.getans(i + n, ans);
printf("%d:", i);
for (int j = 0; j < ans.size(); j++)
printf(" %d", ans[j]);
printf("\n");
}
} else printf("No Solution!\n");
return 0;
}
-------------------------------------------------------
kedebug
Department of Computer Science and Engineering,
Shanghai Jiao Tong University
E-mail: kedebug0@gmail.com
GitHub: http://github.com/kedebug
-------------------------------------------------------