POJ 3093 Margaritas on the River Walk(背包方案统计变型)

题意:

给n个物品,容量为V的包,要求这样的方案数:选中 k 个物品放入背包后,剩下的物品中,任意一个都放不进去

思路:

1. 对于普通的方案统计有:dp[0] = 1, dp[v] += dp[v - wk] 即容量为 v 时,拿第 k 件物品和不拿第 k 件物品的情况的和

2. 本题要求剩下的物品,任意一个都放不进去,则需要特殊考虑:

   a. 对物品进行从小到大排序,按照二分的思想有:拿第 k 件物品和不拿第 k 件物品

   b. 如果不拿第 k 件,即剩下第 k 件,则 0~k-1 的物品必须都拿才能保证剩下的物品,任意一个都放不进去,k + 1~END 按照背包方案统计即可

 

#include <iostream>
#include <algorithm>
using namespace std;

const int MAXN = 32;
const int MAXD = 1010;

int w[MAXN], dp[MAXD];

int main()
{
    int cases, cc = 0;
    scanf("%d", &cases);
    while (cases--)
    {
        int n, vol;
        scanf("%d %d", &n, &vol);

        for (int i = 0; i < n; ++i)
            scanf("%d", &w[i]);

        sort(w, w + n);

        int sum = 0, delta = 0;
        for (int i = 0; i < n; ++i)
        {
            memset(dp, 0, sizeof(dp));
            dp[delta] = 1;

            for (int j = i + 1; j < n; ++j)
                for (int v = vol; v >= w[j] + delta; --v)
                    dp[v] += dp[v - w[j]];

            for (int v = vol; v > max(vol - w[i], 0); --v)
                if (v >= delta)
                    sum += dp[v];

            delta += w[i];
        }
        printf("%d %d\n", ++cc, sum);
    }
    return 0;
}
posted @ 2013-02-18 20:18  kedebug  阅读(263)  评论(0编辑  收藏  举报