网络流24题(03)最小路径覆盖问题(二分图匹配 + 最大流)
思路:
1. 把每个点拆分成 2 个点 Xi, Yi,由 s 向 Xi 引弧,Yi 向 t 引弧,如果 Xi, Yj 存在弧则引弧。所有弧的容量均为 1;
2. 这样就构造出来了二分图的模型,然后求最大流即是这个二分图的最大匹配了。路径数 = 点数 - 最大流;
3. 因为如果存在一个匹配边,则被覆盖的点数就会减 1,所以此时路径数就是如 2 中求得;
#include <cstdio>
#include <cstring>
#include <cctype>
#include <algorithm>
#include <queue>
#include <vector>
using namespace std;
const int MAXN = 1010;
const int INFS = 0x3FFFFFFF;
struct edge {
int from, to, cap, flow;
edge(int _from, int _to, int _cap, int _flow)
: from(_from), to(_to), cap(_cap), flow(_flow) {}
};
class Dinic {
public:
void initdata(int n, int s, int t) {
this->n = n, this->s = s, this->t = t;
edges.clear();
for (int i = 0; i < n; i++)
G[i].clear();
}
void addedge(int u, int v, int cap) {
edges.push_back(edge(u, v, cap, 0));
edges.push_back(edge(v, u, 0, 0));
G[u].push_back(edges.size() - 2);
G[v].push_back(edges.size() - 1);
}
bool BFS() {
for (int i = 0; i < n; i++)
vis[i] = false, d[i] = 0;
queue<int> Q;
Q.push(s);
vis[s] = true;
while (!Q.empty()) {
int x = Q.front(); Q.pop();
for (int i = 0; i < G[x].size(); i++) {
edge& e = edges[G[x][i]];
if (e.cap > e.flow && !vis[e.to]) {
vis[e.to] = true;
d[e.to] = d[x] + 1;
Q.push(e.to);
}
}
}
return vis[t];
}
int DFS(int x, int aug) {
if (x == t || aug == 0) return aug;
int flow = 0;
for (int i = 0; i < G[x].size(); i++) {
edge& e = edges[G[x][i]];
if (d[e.to] == d[x] + 1) {
int f = DFS(e.to, min(aug, e.cap - e.flow));
if (f <= 0) continue;
e.flow += f;
edges[G[x][i]^1].flow -= f;
flow += f;
aug -= f;
if (aug == 0) break;
}
}
return flow;
}
int maxflow() {
int flow = 0;
while (BFS()) {
flow += DFS(s, INFS);
}
return flow;
}
void print(int x) {
vis[x] = true;
int num = (n-2)/2;
for (int i = 0; i < G[x].size(); i++) {
edge& e = edges[G[x][i]];
if (!vis[e.to] && e.to != t && e.flow == 1) {
printf(" %d", e.to - num); print(e.to - num);
}
}
}
void printpath() {
int flow = maxflow();
memset(vis, false, sizeof(vis));
int num = (n-2)/2;
for (int i = 1; i <= num; i++) {
if (!vis[i]) {
printf("%d", i);
print(i); printf("\n");
}
}
printf("%d\n", num - flow);
}
private:
vector<edge> edges;
vector<int> G[MAXN];
int n, s, t, d[MAXN];
bool vis[MAXN];
};
Dinic dinic;
int main() {
int n, m;
scanf("%d%d", &n, &m);
int s = 0, t = 2*n + 1;
dinic.initdata(t+1, s, t);
for (int i = 1; i <= n; i++) {
dinic.addedge(s, i, 1);
dinic.addedge(i + n, t, 1);
}
while (m--) {
int u, v;
scanf("%d%d", &u, &v);
dinic.addedge(u, v + n, 1);
}
dinic.printpath();
return 0;
}
-------------------------------------------------------
kedebug
Department of Computer Science and Engineering,
Shanghai Jiao Tong University
E-mail: kedebug0@gmail.com
GitHub: http://github.com/kedebug
-------------------------------------------------------