网络流24题(02)太空飞行计划(最大流最小割)

思路:

1. 题目所传达的意思是:从中选择若干个实验,并且附带的设备都要选择。求所能所得的最大净利润; 

2. 设实验所在集合为 X 集,设备所在集为 Y 集。从 s 向 X 引弧,容量为 Pi,从 Y 向 t 引弧,容量为 Ci,X 向关联的 Y 引弧,容量为 INFS;

3. 求上述网络的最大流。根据最大流求出最小割,假设 s 所在的点集为 S,则 S 中所选择的实验以及设备即是最终要选择的结果;

4. 因为 X->Y 的弧都是 INFS,所以在 S 中,选择了 x 实验,则其附带的设备一定都选择了(根据残留网络不存在增广路径,可以用反证法理解)。

5. 最终最大流的数据是:选择的设备花费值 + 不选择的实验资金值(因为最小割的的弧是满弧,所以割中的实验是不赚钱的,所以可以无视)

6. 输出的结果即为:选择的实验资金总值 + 选择的设备花费值 = SUM - 最大流。

 

#include <cstdio>
#include <cstring>
#include <cctype>
#include <algorithm>
#include <queue>
#include <vector>
using namespace std;

const int MAXN = 210;
const int INFS = 0x3FFFFFFF;

struct edge {
    int from, to, cap, flow;
    edge(int _from, int _to, int _cap, int _flow) 
        : from(_from), to(_to), cap(_cap), flow(_flow) {}
};

class Dinic {
public:
    void clearall(int n) {
        this->n = n;
        edges.clear();
        for (int i = 0; i < n; i++)
            G[i].clear();
    }
    void addedge(int u, int v, int cap) {
        edges.push_back(edge(u, v, cap, 0));
        edges.push_back(edge(v, u, 0, 0));
        G[u].push_back(edges.size() - 2);
        G[v].push_back(edges.size() - 1);
    }
    bool BFS() {
        for (int i = 0; i < n; i++)
            vis[i] = false, d[i] = 0;
        queue<int> Q;
        Q.push(s);
        vis[s] = true;
        while (!Q.empty()) {
            int x = Q.front(); Q.pop();
            for (int i = 0; i < G[x].size(); i++) {
                edge& e = edges[G[x][i]];
                if (e.cap > e.flow && !vis[e.to]) {
                    vis[e.to] = true;
                    d[e.to] = d[x] + 1;
                    Q.push(e.to);
                }
            }
        }
        return vis[t];
    }
    int DFS(int x, int aug) {
        if (x == t || aug == 0) return aug;
        int flow = 0;
        for (int i = 0; i < G[x].size(); i++) {
            edge& e = edges[G[x][i]];
            if (d[e.to] == d[x] + 1) {
                int f = DFS(e.to, min(aug, e.cap - e.flow));
                if (f <= 0) continue;
                e.flow += f;
                edges[G[x][i]^1].flow -= f;
                flow += f;
                aug -= f;
                if (aug == 0) break;
            } 
        }
        return flow;
    }
    int maxflow(int s, int t) {
        this->s = s, this->t = t;
        int flow = 0;
        while (BFS()) {
            flow += DFS(s, INFS);
        }
        return flow;
    }
    void getans(vector<int>& ans) {
        ans.clear();
        for (int i = 1; i < n; i++) {
            if (vis[i]) ans.push_back(i);
        }
        sort(ans.begin(), ans.end());
    }
private:
    vector<edge> edges;
    vector<int> G[MAXN];
    int n, s, t, d[MAXN];
    bool vis[MAXN];
};

Dinic dinic;
int pay[110], cost[110];

int main() {
    freopen("shuttle.in", "r", stdin);
    freopen("shuttle.out", "w", stdout);

    int n, m;
    scanf("%d%d", &m, &n);
    int s = 0, t = m + n + 1;
    dinic.clearall(m + n + 2);

    for (int i = 1; i <= m; i++) {
        int x;
        scanf("%d", &x);
        pay[i] = x;
        dinic.addedge(s, i, x); 
        while (true) {
            char c;
            do {
                c = getchar();
            } while (c == ' ');
            ungetc(c, stdin);
            if (c == 10 || c == 13) break;
            scanf("%d", &x);
            dinic.addedge(i, x + m, INFS);
        }
    }

    for (int u = 1; u <= n; u++) {
        scanf("%d", &cost[u]);
        dinic.addedge(u + m, t, cost[u]);
    }

    int flow = dinic.maxflow(s, t);
    vector<int> ans;
    dinic.getans(ans);
    int sum = 0;
    for (int i = 0; i <= m; i++)
        sum += pay[i];
    bool first = false;
    int i;
    for (i = 0; i < ans.size(); i++) {
        if (ans[i] > m) break;
        if (!first) first = true, printf("%d", ans[i]);
        else printf(" %d", ans[i]);
    }
    printf("\n");
    first = false;
    for (; i < ans.size(); i++) {
        if (!first) first = true, printf("%d", ans[i] - m);
        else printf(" %d", ans[i] - m);
    }
    printf("\n%d\n", sum - flow);
    return 0;
}
posted @ 2013-04-17 15:54  kedebug  阅读(439)  评论(0编辑  收藏  举报