UVa 106 Fermat vs. Pythagoras(毕达哥拉斯定理)

题意:

给一个正整数N,x2 + y2 = z2

其中x,y和Z都限定为正整数且小于等于N。

你要计算出所有满足x < y < z的三元组(x,y,z)的数量,并且使得x,y和z两两互质,

即没有大于1的公因数。你还要计算出所有满足下面条件的p的数量:0 < p ≤ N,且p没有在所有这样的三元组中出现(并不限定为两两互质的三元组)

思路:

http://www.cnblogs.com/devymex/archive/2010/08/07/1799713.html

 

#include <cstdio>
#include <cstring>
#include <cstring>
#include <cmath>

bool hash[1000010];

int gcd(int x, int y)
{
    int k = x % y;
    while (k)
    {
        x = y;
        y = k;
        k = x % y;
    }
    return y;
}

int main()
{
    int n;
    while (scanf("%d", &n) != EOF)
    {
        int count = 0;
        memset(hash, false, sizeof(hash));
        for (int i = 1; i <= (int)sqrt(n*1.0); ++i)
            for (int j = i + 1; j <= (int)sqrt(n*1.0); j += 2)
                if (gcd(i, j) == 1) {
                    int a, b, c;
                    a = j * j - i * i;
                    b = 2 * i * j;
                    c = i * i + j * j;
                    if (c > n)
                        break;
                    for (int k = 1; k * c <= n; ++k)
                        hash[k*a] = true, hash[k*b] = true, hash[k*c] = true;
                    ++count;
                }
        int ans = 0;
        for (int i = 1; i <= n; ++i)
            if (!hash[i])
                ++ans;
        printf("%d %d\n", count, ans);
    }
    return 0;
}

 

 

posted @ 2012-12-03 15:01  kedebug  阅读(478)  评论(0编辑  收藏  举报