elasticsearch中query和filter的区别
参考博客来自:
query关注点:此文档与此查询子句的匹配程度如何?
filter关注点:此文档和查询子句匹配吗?
query 上下文的条件是用来给文档打分的,匹配越好 _score 越高;filter 的条件只产生两种结果:符合与不符合,后者被过滤掉。 这个 总结可以
2、Query检索细化关注点
1)是否包含?
确定文档是否应该成为结果的一部分.
2)相关度得分多少?
除了确定文档是否匹配外,查询子句还计算了表示文档与其他文档相比匹配程度的_score。
3)得分越高,相关度越高。
更相关的文件,在搜索排名更高。
典型应用场景:
1)全文检索——这种相关性的概念非常适合全文搜索,因为很少有完全“正确”的答案。
举例如下:
文档中存在字段hotel_name:“上海浦东香格里拉酒店”
IK实际分词结果如下:
上海浦东,上海,浦东,香格里拉,格里,里拉,酒店。
也就是说,搜索以上关键词都能搜到:hotel_name:“上海浦东香格里拉酒店”的酒店。这些都是“相关”的。
但是搜索:“香格里” 是搜索不到结果的。
2)包含单词“run”, 但也匹配"runs", "running", "jog"或者"sprint"。(都是奔跑的意思)
3、filter过滤细化关注点
1)是否包含?
确定是否包含在检索结果中,回答只有“是”或“否”。
2)不涉及评分。
在搜索中没有额外的相关度排名。
3)针对结构化数据。
适用于完全精确匹配,范围检索。
参见官网举例:
以下场景适用于filter过滤检索:
举例1:时间戳timestamp 是否在2015至2016年范围内?
举例2:状态字段status 是否设置为“published”?
4)更快。
只确定是否包括结果中,不需要考虑得分。
为什么会更快?——经常使用的过滤器将被Elasticsearch自动缓存,以提高性能。
过滤(filter)的目标是减少必须由评分查询(query)检查的文档数量。
6、使用场景
-
全文检索以及任何使用相关性评分的场景使用query检索。
-
除此之外的其他使用filter过滤器过滤。
举例
GET /_search { "query": { "bool": { "must": [ { "match": { "title": "Search" }}, { "match": { "content": "Elasticsearch" }} ], "filter": [ { "term": { "status": "published" }}, { "range": { "publish_date": { "gte": "2015-01-01" }}} ] } } }
posted on 2020-05-31 19:30 luzhouxiaoshuai 阅读(725) 评论(0) 编辑 收藏 举报
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· AI编程工具终极对决:字节Trae VS Cursor,谁才是开发者新宠?
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
2017-05-31 android屏幕适配的全攻略2--支持手机各种屏幕密度dpi
2017-05-31 android屏幕适配的全攻略3-动态获取手机屏幕宽高及动态设置控件宽高
2017-05-31 android屏幕适配的全攻略--支持不同的屏幕尺寸适配平板和手机