【论文阅读笔记】大模型推理加速 —— FastV

论文地址:https://arxiv.org/pdf/2403.06764
代码地址:https://github.com/pkunlp-icler/FastV

image

Introduction

  • 现象(问题):大多数 LVLM 在深层的 attention 分数很低;
  • 推测:视觉信号的冗余导致在千层会被聚合为 "anchor" token,在深层中,网络更关注这些 "anchor";
  • FastV:应用于某一层中,前面的 layer 正常计算,后面的根据 threshold 随机丢弃;

image

Inefficient Visual Attention in VLLMs

Preliminaries

给定 image-question pair \((d, t)\),利用 decoder 自回归生成过程:

\[p(\hat{y})=\prod_{i=1}^Np_M\left(\hat{y}_i\mid\hat{y}_{1\sim i-1};d;t\right) \]

两种分数

\(\alpha^{i,j}_{sys},\alpha^{i,j}_{img},\alpha^{i,j}_{ins},\alpha^{i,j}_{out}\) 代表第 \(j\) 层,第 \(i\) 个 token 的注意力分数。则有下面两种分数:

\[\text{total attention of system prompt in layer}\ j :\ \lambda_{sys}^{j}=\sum_{i=1}^{n}\alpha_{sys}^{i,j} \]

\[\text{attention efficiency of image tokens in layer}\ j:\ \epsilon_{img}^{j}=\frac{\sum_{i=1}^{n}\alpha_{img}^{i,j}}{|img|} \]

结果分析

image

FastV

Overview

image

Re-rank and Filtering module (core)

\[ranking \ \ function: f_{\phi} \]

\[filtering \ \ layer: K \]

\[filtering \ \ ratio: R \]

在第 \(K\) 层后,利用 \(f_{\phi}\) 对 token 的注意力分数进行排序(利用该 token 对于其他所有 token 的平均注意力得分),后 \(R\%\) 会被丢弃。

Thought

Same as LoRA, so straightforward that everyone can make delevopment based on this. It's a good start for MLLM's inference using plug-and-play module.

posted @ 2024-10-21 15:47  KeanShi  阅读(67)  评论(0编辑  收藏  举报