时间复杂度分析
一、复杂度分析的4个概念
1.最好情况时间复杂度:代码在最理想情况下执行的时间复杂度。
2.最坏情况时间复杂度:代码在最坏情况下执行的时间复杂度。
3.平均时间复杂度:用代码在所有情况下执行的次数的加权平均值表示。
4.均摊时间复杂度:在代码执行的所有复杂度情况中绝大部分是低级别的复杂度,个别情况是高级别复杂度且发生具有时序关系时,可以将个别高级别复杂度均摊到低级别复杂度上。基本上均摊结果就等于低级别复杂度。
二、为什么要引入这4个概念?
1.同一段代码在不同情况下时间复杂度会出现量级差异,为了更全面,更准确的描述代码的时间复杂度,所以引入这4个概念。
2.代码复杂度在不同情况下出现量级差别时才需要区别这四种复杂度。大多数情况下,是不需要区别分析它们的。
三、如何分析平均、均摊时间复杂度?
1.平均时间复杂度
代码在不同情况下复杂度出现量级差别,则用代码所有可能情况下执行次数的加权平均值表示。
2.均摊时间复杂度
两个条件满足时使用:1)代码在绝大多数情况下是低级别复杂度,只有极少数情况是高级别复杂度;2)低级别和高级别复杂度出现具有时序规律。均摊结果一般都等于低级别复杂度。
// array 表示一个长度为 n 的数组 // 代码中的 array.length 就等于 n int[] array = new int[n]; int count = 0; void insert(int val) { if (count == array.length) { int sum = 0; for (int i = 0; i < array.length; ++i) { sum = sum + array[i]; } array[0] = sum; count = 1; } array[count] = val; ++count; }
这段代码实现了一个往数组中插入数据的功能。当数组满了之后,也就是代码中的 count == array.length 时,我们用 for 循环遍历数组求和,并清空数组。将求和之后的 sum 值放到数组的第一个位置,然后再将新的数据插入。
清空数组的问题: 对于可反复读写的存储空间,使用者认为它是空的它就是空的。如果你定义清空是全部重写为0或者某个值,那也可以!但是例子里完全没必要啊!写某个值和写任意值在这里有区别吗,使用者只关心要存的新值!所以这个例子,清空把下标指到第一个位置就可以了!