https://www.cnblogs.com/tsw123/p/4374728.html
点修改
Update(x,v): 把A[x]修改为v
Query(L,R): 计算区间[L,R] 最小值.
// Dynamic RMQ // Rujia Liu // 输入格式: // n m 数组范围是a[1]~a[n],初始化为0。操作有m个 // 1 p v 表示设a[p]=v // 2 L R 查询a[L]~a[R]的min #include<cstdio> #include<cstring> #include<algorithm> using namespace std; const int INF = 1000000000; const int maxnode = 1<<17; int op, qL, qR, p, v; //qL和qR为全局变量,询问区间[qL,qR]; struct IntervalTree { int minv[maxnode]; void update(int o, int L, int R) { int M = L + (R-L)/2; if(L == R) minv[o] = v; // 叶结点,直接更新minv else { // 先递归更新左子树或右子树 if(p <= M) update(o*2, L, M); else update(o*2+1, M+1, R); // 然后计算本结点的minv minv[o] = min(minv[o*2], minv[o*2+1]); } } int query(int o, int L, int R) { int M = L + (R-L)/2, ans = INF; if(qL <= L && R <= qR) return minv[o]; // 当前结点完全包含在查询区间内 if(qL <= M) ans = min(ans, query(o*2, L, M)); // 往左走 if(M < qR) ans = min(ans, query(o*2+1, M+1, R)); // 往右走 return ans; } }; IntervalTree tree; int main() { int n, m; while(scanf("%d%d", &n, &m) == 2) { memset(&tree, 0, sizeof(tree)); while(m--) { scanf("%d", &op); if(op == 1) { scanf("%d%d", &p, &v); tree.update(1, 1, n); // 修改树节点,或者是建树的过程 } else { scanf("%d%d", &qL, &qR); //修改询问区间 printf("%d\n", tree.query(1, 1, n)); } } } return 0; }
区间修改
一段区间加上一个数求最大值、最小值、和
// Fast Sequence Operations I // Rujia Liu // 输入格式: // n m 数组范围是a[1]~a[n],初始化为0。操作有m个 // 1 L R v 表示设a[L]+=v, a[L+1]+v, ..., a[R]+=v // 2 L R 查询a[L]~a[R]的sum, min和max #include<cstdio> #include<cstring> #include<algorithm> using namespace std; const int maxnode = 1<<17; int _sum, _min, _max, op, qL, qR, v; //<span style="color:#ff0000;">_sum为全局变量</span> struct IntervalTree { int sumv[maxnode], minv[maxnode], maxv[maxnode], addv[maxnode]; // 维护信息 void maintain(int o, int L, int R) { int lc = o*2, rc = o*2+1; sumv[o] = minv[o] = maxv[o] = 0; if(R > L) { sumv[o] = sumv[lc] + sumv[rc]; minv[o] = min(minv[lc], minv[rc]); maxv[o] = max(maxv[lc], maxv[rc]); } if(addv[o]) { minv[o] += addv[o]; maxv[o] += addv[o]; sumv[o] += addv[o] * (R-L+1); } } void update(int o, int L, int R) { int lc = o*2, rc = o*2+1; if(qL <= L && qR >= R) { // 递归边界 addv[o] += v; // 累加边界的add值 } else { int M = L + (R-L)/2; if(qL <= M) update(lc, L, M); if(qR > M) update(rc, M+1, R); } maintain(o, L, R); // 递归结束前重新计算本结点的附加信息 } void query(int o, int L, int R, int add) { if(qL <= L && qR >= R) { // 递归边界:用边界区间的附加信息更新答案 _sum += sumv[o] + add * (R-L+1); _min = min(_min, minv[o] + add); _max = max(_max, maxv[o] + add); } else { // 递归统计,累加参数add int M = L + (R-L)/2; if(qL <= M) query(o*2, L, M, add + addv[o]); if(qR > M) query(o*2+1, M+1, R, add + addv[o]); } } }; const int INF = 1000000000; IntervalTree tree; int main() { int n, m; while(scanf("%d%d", &n, &m) == 2) { memset(&tree, 0, sizeof(tree)); while(m--) { scanf("%d%d%d", &op, &qL, &qR); if(op == 1) { scanf("%d", &v); tree.update(1, 1, n); } else { _sum = 0; _min = INF; _max = -INF; tree.query(1, 1, n, 0); printf("%d %d %d\n", _sum, _min, _max); } } } return 0; }
修改区间的值
求区间的和,最大值,最小值
// Fast Sequence Operations II // Rujia Liu // 输入格式: // n m 数组范围是a[1]~a[n],初始化为0。操作有m个 // 1 L R v 表示设a[L]=a[L+1]=...=a[R] = v。其中v > 0 // 2 L R 查询a[L]~a[R]的sum, min和max #include<cstdio> #include<cstring> #include<algorithm> using namespace std; const int maxnode = 1<<17; int _sum, _min, _max, op, qL, qR, v; struct IntervalTree { int sumv[maxnode], minv[maxnode], maxv[maxnode], setv[maxnode]; // 维护信息 void maintain(int o, int L, int R) { int lc = o*2, rc = o*2+1; if(R > L) { sumv[o] = sumv[lc] + sumv[rc]; minv[o] = min(minv[lc], minv[rc]); maxv[o] = max(maxv[lc], maxv[rc]); } if(setv[o] >= 0) { minv[o] = maxv[o] = setv[o]; sumv[o] = setv[o] * (R-L+1); } } // 标记传递 void pushdown(int o) { int lc = o*2, rc = o*2+1; if(setv[o] >= 0) { //本结点有标记才传递。注意本题中set值非负,所以-1代表没有标记 setv[lc] = setv[rc] = setv[o]; setv[o] = -1; // 清除本结点标记 } } void update(int o, int L, int R) { int lc = o*2, rc = o*2+1; if(qL <= L && qR >= R) { // 标记修改 setv[o] = v; } else { pushdown(o); int M = L + (R-L)/2; if(qL <= M) update(lc, L, M); else maintain(lc, L, M); if(qR > M) update(rc, M+1, R); else maintain(rc, M+1, R); } maintain(o, L, R); } void query(int o, int L, int R) { if(setv[o] >= 0) { // 递归边界1:有set标记 _sum += setv[o] * (min(R,qR)-max(L,qL)+1); _min = min(_min, setv[o]); _max = max(_max, setv[o]); } else if(qL <= L && qR >= R) { // 递归边界2:边界区间 _sum += sumv[o]; // 此边界区间没有被任何set操作影响 _min = min(_min, minv[o]); _max = max(_max, maxv[o]); } else { // 递归统计 int M = L + (R-L)/2; if(qL <= M) query(o*2, L, M); if(qR > M) query(o*2+1, M+1, R); } } }; const int INF = 1000000000; IntervalTree tree; int main() { int n, m; while(scanf("%d%d", &n, &m) == 2) { memset(&tree, 0, sizeof(tree)); memset(tree.setv, -1, sizeof(tree.setv)); tree.setv[1] = 0; while(m--) { scanf("%d%d%d", &op, &qL, &qR); if(op == 1) { scanf("%d", &v); tree.update(1, 1, n); } else { _sum = 0; _min = INF; _max = -INF; tree.query(1, 1, n); printf("%d %d %d\n", _sum, _min, _max); } } } return 0; }
最后附上蒟蒻自己写的板子,可能有不对的地方,欢迎指正。
#include<bits/stdc++.h> #define _for(i,a,b) for(int i=a;i<=b;i++) using namespace std; typedef long long ll; const int mod =1e6+7; double esp=1e-6; int INF =0x3f3f3f3f; const int inf = 1<<28; const int MAXN=1e5+5; struct ST { int num,_max,_min,_sum,l,r,lz; ST() { lz=0; } }tree[MAXN*4]; void build(int l,int r,int id) { tree[id].l=l; tree[id].r=r; tree[id].lz=0; if(l==r) { scanf("%d",&tree[id].num); tree[id]._sum=tree[id].num; tree[id]._max=tree[id].num; tree[id]._min=tree[id].num; //printf("%d:%d\n",id,tree[id].num); return ; } int mid=(l+r)>>1; build(l,mid,id*2); build(mid+1,r,id*2+1); tree[id]._sum=tree[id*2]._sum+tree[id*2+1]._sum; //printf("%d:%d\n",id,tree[id].) tree[id]._max=max(tree[id*2]._max,tree[id*2+1]._max); tree[id]._min=min(tree[id*2]._min,tree[id*2+1]._min); //printf("%d:%d %d\n",id,tree[id]._max,tree[id]._min); } void update(int id,int k,int num)//单点修改 { if(tree[id].l==tree[id].r) { //printf("**%d\n",k); tree[id].num=num; return ; } if(k<=tree[id*2].r)update(id*2,k,num); else update(id*2+1,k,num); tree[id]._sum=tree[id*2]._sum+tree[id*2+1]._sum; tree[id]._max=max(tree[id*2]._max,tree[id*2+1]._max); tree[id]._min=min(tree[id*2]._min,tree[id*2+1]._min); } int Seach(int id,int k)//单点查询 { if(tree[id].l==tree[id].r) return tree[id].num; if(k<=tree[2*id].r) Seach(id*2,k); else Seach(id*2+1,k); } void push_down(int id)//下放lz标记 { if(tree[id].lz!=0) { tree[id*2].lz+=tree[id].lz; tree[id*2+1].lz+=tree[id].lz; int mid=(tree[id].l+tree[id].r)>>1; tree[id*2]._sum+=tree[id*2].lz*(mid-tree[id].l+1); tree[id*2+1]._sum+=tree[id*2].lz*(tree[id].r-mid); tree[id*2]._max+=tree[id].lz; tree[id*2+1]._max+=tree[id].lz; tree[id*2]._min+=tree[id].lz; tree[id*2+1]._min+=tree[id].lz; tree[id].lz=0; } return ; } void updata_Qu(int l,int r,int id,int num)//l-r区间加上num { if(tree[id].r<=r&&tree[id].l>=l) { tree[id]._sum+=num*(tree[id].r-tree[id].l+1); tree[id]._max=max(tree[id].r+num,tree[id].l+num); tree[id]._min=min(tree[id].r+num,tree[id].l+num); tree[id].lz+=num; return ; } push_down(id); if(tree[id*2].r>=l) updata_Qu(l,r,id*2,num); if(tree[id*2+1].l<=r) updata_Qu(l,r,id*2+1,num); tree[id]._sum=tree[id*2]._sum+tree[id*2+1]._sum; tree[id]._max=max(tree[id*2]._max,tree[id*2+1]._max); tree[id]._min=min(tree[id*2]._min,tree[id*2+1]._min); return ; } int Ma,Mi; int Seach_Qu(int l,int r,int id)//区间查找 { if(tree[id].l>=l&&tree[id].r<=r) { Ma=max(tree[id]._max,Ma); Mi=min(tree[id]._min,Mi); return tree[id]._sum; } push_down(id); int s=0; if(tree[2*id].r>=l){s+=Seach_Qu(l,r,id*2);}//Mi=min(Mi,tree[id*2]._min);Ma=max(Ma,tree[id*2]._max);} if(tree[2*id+1].l<=r){s+=Seach_Qu(l,r,id*2+1);}//Mi=min(Mi,tree[id*2+1]._min);Ma=max(Ma,tree[id*2+1]._max);} return s; } int main() { int n; scanf("%d",&n); build(1,n,1); updata_Qu(1,n,1,4);//1-n区间加上4 Ma=-INF,Mi=INF; int mm=Seach_Qu(2,5,1);//查找[2-5]修改完后的和,最大值,最小值 printf("%d %d %d\n",mm,Ma,Mi); //单点修改 // update(1,4,0); // printf("%d\n",Seach(1,4)); return 0; }