2018 ICPC南京网络赛 A An Olympian Math Problem(数论题)
Alice, a student of grade 6, is thinking about an Olympian Math problem, but she feels so despair that she cries. And her classmate, Bob, has no idea about the problem. Thus he wants you to help him. The problem is:
We denote k!:
k! = 1 × 2 × ⋯ × (k - 1) × k
We denote S:
S = 1 × 1! + 2 × 2! + ⋯ + (n−1) × (n−1)!
Then S module n is ____________
You are given an integer n.
You have to calculate S modulo n.
Input
The first line contains an integer T(T≤1000), denoting the number of test cases.
For each test case, there is a line which has an integer n.
It is guaranteed that 2 ≤ n ≤ 1018.
Output
For each test case, print an integer S modulo n.
Hint
The first test is: S = 1 × 1! = 1, and 1 modulo 2 is 1.
The second test is: S = 1 × 1! + 2 × 2! = 5 , and 5 modulo 3 is 2.
样例输入
2 2 3
样例输出
1 2
题意:
已知S = 1 × 1! + 2 × 2! + ⋯ + (n−1) × (n−1)!,求S%n的值。
思路:
直接上结论吧,S%n=n-1
#include<iostream> using namespace std; typedef long long ll; int main() { int t; cin>>t; while(t--) { ll n; cin>>n; cout<<n-1<<endl; } return 0; }