POJ-3281 Dining
题目链接:POJ-3281 Dining
题意
有$N$头牛,$F$个食物,$D$个饮料,每头牛有一定的喜好,只喜欢某几个食物和饮料,一头牛必须同时获得一个食物和一个饮料才能满足,问至多有多少头牛可以获得满足。
思路
流网络建图:
一头牛拆分成两个点$u$和$v$,这头牛喜欢的食物向$u$连边,$u$向$v$连边,$v$向这头牛喜欢的饮料连边;
源点$s$向每个食物连边,每个饮料向汇点$t$连边,所有边容量都是1。
最大流即为答案。
代码实现
#include <iostream> #include <cstdio> #include <cstring> #include <queue> using std::queue; const int INF = 1 << 29, N = 1000, M = 30010; int head[N], ver[M], edge[M], Next[M], d[N]; int s, t, tot, maxflow; queue<int> q; void add(int x, int y, int z) { ver[++tot] = y, edge[tot] = z, Next[tot] = head[x], head[x] = tot; ver[++tot] = x, edge[tot] = 0, Next[tot] = head[y], head[y] = tot; } bool bfs() { memset(d, 0, sizeof(d)); while (q.size()) q.pop(); q.push(s); d[s] = 1; while (q.size()) { int x = q.front(); q.pop(); for (int i = head[x]; i; i = Next[i]) { if (edge[i] && !d[ver[i]]) { q.push(ver[i]); d[ver[i]] = d[x] + 1; if (ver[i] == t) return true; } } } return false; } int dinic(int x, int flow) { if (x == t) return flow; int rest = flow, k; for (int i = head[x]; i && rest; i = Next[i]) { if (edge[i] && d[ver[i]] == d[x] + 1) { k = dinic(ver[i], std::min(rest, edge[i])); if (!k) d[ver[i]] = 0; edge[i] -= k; edge[i^1] += k; rest -= k; } } return flow - rest; } int main() { int nn, fo, dr; while (~scanf("%d %d %d", &nn, &fo, &dr)) { memset(head, 0, sizeof(head)); s = 0, t = 2 * nn + fo + dr + 1, tot = 1, maxflow = 0; for (int i = 1; i <= fo; i++) add(0, i, 1); for (int i = fo + 2 * nn + 1; i <= fo + 2 * nn + dr; i++) add(i, fo + 2 * nn + dr + 1, 1); for (int i = fo + 1; i <= fo + nn; i++) add(i, i + nn, 1); for (int i = 1; i <= nn; i++) { int fi, di, tpe; scanf("%d %d", &fi, &di); for (int j = 0; j < fi; j++) { scanf("%d", &tpe); add(tpe, fo + i, 1); } for (int j = 0; j < di; j++) { scanf("%d", &tpe); add(fo + i + nn, tpe + fo + 2 * nn, 1); } } while (bfs()) maxflow += dinic(s, INF); printf("%d\n", maxflow); } return 0; }
作者:_kangkang
本文版权归作者和博客园共有,欢迎转载,但必须给出原文链接,并保留此段声明,否则保留追究法律责任的权利。