HashMap的扩容机制以及默认大小为何是2次幂
回顾HashMap的put(Key k, Value v)过程:
(1)对 Key求Hash值,对n-1取模计算出Hash表数组下标
(2)如果没有碰撞,直接放入桶中,即Hash表数组对应位置的链表表头。
(3)如果碰撞了,若节点已经存在就替换旧值,否则以链表的方式将该元素链接到后面。
(4)如果链表长度超过阀值(TREEIFY_THRESHOLD == 8),就把链表转成红黑树。红黑树我不熟悉,这里不展开讲。
(5)如果桶满了(容量 * 加载因子),就需要resize。
HashMap的扩容机制
假设length为Hash表数组的大小,方法indexFor(int hash, int length)为
indexFor(int hash, int length) { return hash % length; }
在旧数组中同一条Entry链上的元素,在resize过程中,通过重新计算索引位置后,有可能被放到了新数组的不同位置上。JDK8做了一些优化,resize过程中对Hash表数组大小的修改使用的是2次幂的扩展(指长度扩为原来2倍),这样有2个好处。
好处1
在hashmap的源码中。put方法会调用indexFor(int h, int length)方法,这个方法主要是根据key的hash值找到这个entry在Hash表数组中的位置,源码如下:
/** * Returns index for hash code h. */ static int indexFor(int h, int length) { // assert Integer.bitCount(length) == 1 : "length must be a non-zero power of 2"; return h & (length-1); }
上述代码也相当于对length求模。 注意最后return的是h&(length-1)。如果length不为2的幂,比如15。那么length-1的2进制就会变成1110。在h为随机数的情况下,和1110做&操作。尾数永远为0。那么0001、1001、1101等尾数为1的位置就永远不可能被entry占用。这样会造成浪费,不随机等问题。 length-1 二进制中为1的位数越多,那么分布就平均。
好处2
以下图为例,其中图(a)表示扩容前的key1和key2两种key确定索引位置的示例,图(b)表示扩容后key1和key2两种key确定索引位置的示例,n代表length。
元素在重新计算hash之后,因为n变为2倍,那么n-1的mask范围在高位多1bit(红色),因此新的index就会发生这样的变化:
resize过程中不需要像JDK1.7的实现那样重新计算hash,只需要看看原来的hash值新增的那个bit是1还是0就好了,是0的话索引没变,是1的话索引变成“原索引+oldCap”,可以看看下图为16扩充为32的resize示意图(一方面位运算更快,另一方面抗碰撞的Hash函数其实挺耗时的):
源码如下
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
// 超过最大值就不再扩充了,就只好随你碰撞去吧
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
// 没超过最大值,就扩充为原来的2倍
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
// 计算新的resize上限
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) {
// 把每个bucket都移动到新的buckets中
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order 链表优化重hash的代码块
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
// 原索引
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
// 原索引+oldCap
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
// 原索引放到bucket里
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
// 原索引+oldCap放到bucket里
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}