MongoDB Map Reduce

介绍

Map-Reduce是一种计算模型,简单的说就是将大批量的工作分解(MAP)执行,然后再将结果合并成最终结果(REDUCE)。

MongoDB提供的Map-Reduce非常灵活,对于大规模数据分析也相当实用。

基本语法

>db.collection.mapReduce(
   function() {emit(key,value);},  //map 函数
   function(key,values) {return reduceFunction},   //reduce 函数
   {
      out: collection,
      query: document,
      sort: document,
      limit: number
   }
)

使用 MapReduce 要实现两个函数 Map 函数和 Reduce 函数,Map 函数调用 emit(key, value), 遍历 collection 中所有的记录, 将key 与 value 传递给 Reduce 函数进行处理。

Map 函数必须调用 emit(key, value) 返回键值对。

参数说明:

  • map :映射函数 (生成键值对序列,作为 reduce 函数参数)。
  • reduce 统计函数,reduce函数的任务就是将key-values变成key-value,也就是把values数组变成一个单一的值value。。
  • out 统计结果存放集合 (不指定则使用临时集合,在客户端断开后自动删除)。
  • query 一个筛选条件,只有满足条件的文档才会调用map函数。(query。limit,sort可以随意组合)
  • sort 和limit结合的sort排序参数(也是在发往map函数前给文档排序),可以优化分组机制
  • limit 发往map函数的文档数量的上限(要是没有limit,单独使用sort的用处不大)

使用MapReduce示例

> db.col.find()
{ "_id" : ObjectId("56c691ae64799370c0ef3583"), "x" : "a", "status" : "on" }
{ "_id" : ObjectId("56c691af64799370c0ef3584"), "x" : "a", "status" : "on" }
{ "_id" : ObjectId("56c691b064799370c0ef3585"), "x" : "a", "status" : "on" }
{ "_id" : ObjectId("56c691ba64799370c0ef3586"), "x" : "a", "status" : "off" }
{ "_id" : ObjectId("56c691bf64799370c0ef3587"), "x" : "b", "status" : "off" }
{ "_id" : ObjectId("56c691c064799370c0ef3588"), "x" : "b", "status" : "off" }
{ "_id" : ObjectId("56c691c664799370c0ef3589"), "x" : "b", "status" : "on" }

现在找出status=on,按着x分类统计出各自的个数

db.col.mapReduce(
function() { emit(this.x, 1); },
function(key, values) { return Array.sum(values) },
{
    query: {status:"on"},
    out:"post_total",
}
).find()

结果

/* 0 */
{
    "_id" : "a",
    "value" : "aaa"
}

/* 1 */
{
    "_id" : "b",
    "value" : "a"
}

用类似的方式,MapReduce可以被用来构建大型复杂的聚合查询。

Map函数和Reduce函数可以使用 JavaScript 来实现,是的MapReduce的使用非常灵活和强大

posted @ 2016-02-19 14:24  jihite  阅读(1142)  评论(0编辑  收藏  举报