随笔分类 -  机器学习

摘要:介绍K-means算法是是最经典的聚类算法之一,它的优美简单、快速高效被广泛使用。它是很典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。图示 步骤从N个文档随机选取K个文档作... 阅读全文
posted @ 2015-01-17 14:16 jihite 阅读(1014) 评论(0) 推荐(0) 编辑
摘要:一. 爬山算法 ( Hill Climbing ) 作为对比,先介绍爬山算法。爬山算法是一种简单的贪心搜索算法,该算法每次从当前解的临近解空间中选择一个最优解作为当前解,直到达到一个局部最优解。 爬山算法实现很简单,其主要缺点是会陷入局部最优解,而不一定能搜索到全局最优解。如图1所示:假设C点为当前解,爬山算法搜索到A点这个局部最优解就会停止搜索,因为在A点无论向那个方向小幅度移动都不能得到更优的解。二. 模拟退火(SA,Simulated Annealing)思想 爬山法是完完全全的贪心法,每次都鼠目寸光的选择一个当前最优解,因此只能搜索到局部的最优值。模拟退火其实也是一种贪心算... 阅读全文
posted @ 2014-03-08 10:48 jihite 阅读(9769) 评论(1) 推荐(3) 编辑
摘要:支持向量机(英语:Support Vector Machine, 简称SVM),是一种有监督学习方法,可被广泛应用于统计分类以及线性回归。Vapnik等人在多年研究统计学习理论基础上对线性分类器提出了另一种设计最佳准则。其原理也从线性可分说起,然后扩展到线性不可分的情况。甚至扩展到使用非线性函数中去,这种分类器被称为支持向量机。主要思想⑴ 它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征 空间使其线性可分,从而使得高维特征空间采用线性算法对样本的非线性特征进行线性分析成为可能;举例:如下图:将1维的“线性不可分”上升到2维后 阅读全文
posted @ 2013-05-28 20:36 jihite 阅读(2019) 评论(0) 推荐(0) 编辑

点击右上角即可分享
微信分享提示