范德蒙德卷积

范德蒙德卷积

\(\displaystyle C _{x+y}^{k}= \sum _{i=0}^{k}C_{x}^{i} \times C_{y}^{k-i}\);

证明:过菜已隐藏。

意会:在\(x+y\)中选k个,相当于在\(x\)\(y\)中分别选\(i\)个和\(k-i\)个;

所以…… \(C _{x+y}^{k}= \sum _{i=0}^{k}C_{x}^{a+i} \times C_{y}^{k-a-i}\)?

\(eg:\)

\(\displaystyle \sum _{i=0}^{x} C_{x}^{i} C_{y}^{z+i} ~mod~998244353\); \((0<=x,y,z<=1000000,且保证y>=z)\)

\(\displaystyle 原式=\sum _{i=0}^{x}C_{x}^{x-i}C_{y}^{z+i}=C_{x+y}^{x+z}\)

\(ex:\)

  1. \(\displaystyle C_{2n}^{n-1}= \sum _{i=0}^{n-1}C_{n}^{i}C_{n}^{i-1}= \sum _{i=1}^{n}C_{n}^{i}C_{n}^{i+1}\)

    证:

    \(\displaystyle C_{2n}^{n}= \sum _{i=0}^{n-1}C_{n}^{i}C_{n}^{n-(n-1-i)}= \sum _{i=0}^{n-1}C_{n}^{i}C_{n}^{i+1}= \sum _{i=1}^{n} C_{n}^{i}C_{n}^{i-1}\)

    毕;

  2. \(\displaystyle C_{2n}^{n}= \sum _{i=0}^{n}(C_{n}^{i})^2\)

  3. \(C_{n+m}^{m}= \sum _{i=0}^{m}C_{n}^{i}C_{m}^{i}\)

posted @ 2020-08-02 21:47  嘛……  阅读(326)  评论(0编辑  收藏  举报