python任务执行之线程,进程,与协程
一、线程
线程为程序中执行任务的最小单元,由Threading模块提供了相关操作,线程适合于IO操作密集的情况下使用
1 #!/usr/bin/env python 2 # -*- coding:utf-8 -*- 3 import threading 4 import time 5 6 def show(arg): 7 time.sleep(1) 8 print 'thread'+str(arg) 9 10 for i in range(10): 11 t = threading.Thread(target=show, args=(i,)) 12 t.start() 13 14 print 'main thread stop'
上述代码创建了10个“前台”线程,然后控制器就交给了CPU,CPU根据指定算法进行调度,分片执行指令。
更多操作如下
1 start 线程准备就绪,等待CPU调度 2 setName 为线程设置名称 3 getName 获取线程名称 4 setDaemon 设置为后台线程或前台线程(默认) 5 如果是后台线程,主线程执行过程中,后台线程也在进行,主线程执行完毕后,后台线程不论成功与否,均停止 6 如果是前台线程,主线程执行过程中,前台线程也在进行,主线程执行完毕后,等待前台线程也执行完成后,程序停止 7 join 逐个执行每个线程,执行完毕后继续往下执行,该方法使得多线程变得无意义 8 run 线程被cpu调度后自动执行线程对象的run方法
import threading import time class MyThread(threading.Thread): def __init__(self,num): threading.Thread.__init__(self) self.num = num def run(self):#定义每个线程要运行的函数 print("running on number:%s" %self.num) time.sleep(3) if __name__ == '__main__': t1 = MyThread(1) t2 = MyThread(2) t1.start() t2.start()
由于线程之间是进行随机调度,并且每个线程可能只执行n条执行之后,当多个线程同时修改同一条数据时可能会出现混乱数据,所以,出现了线程锁 - 同一时刻允许一个线程执行操作。使用代码方法如下
1 #!/usr/bin/env python 2 #coding:utf-8 3 4 import threading 5 import time 6 7 gl_num = 0 8 9 lock = threading.RLock()#定义锁 10 11 def Func(): 12 lock.acquire()#使用锁 13 global gl_num 14 gl_num +=1 15 time.sleep(1) 16 print gl_num 17 lock.release()#操作完毕,解锁 18 19 for i in range(10): 20 t = threading.Thread(target=Func) 21 t.start()
互斥锁 同时只允许一个线程更改数据,而Semaphore是同时允许一定数量的线程更改数据 ,比如厕所有3个坑,那最多只允许3个人上厕所,后面的人只能等里面有人出来了才能再进去。
1 import threading,time 2 3 def run(n): 4 semaphore.acquire() 5 time.sleep(1) 6 print("run the thread: %s" %n) 7 semaphore.release() 8 9 if __name__ == '__main__': 10 11 num= 0 12 semaphore = threading.BoundedSemaphore(5) #最多允许5个线程同时运行 13 for i in range(20): 14 t = threading.Thread(target=run,args=(i,)) 15 t.start()
线程的事件(event)
python线程的事件用于主线程控制其他线程的执行,事件主要提供了三个方法 set、wait、clear。
事件处理的机制:全局定义了一个“Flag”,如果“Flag”值为 False,那么当程序执行 event.wait 方法时就会阻塞,如果“Flag”值为True,那么event.wait 方法时便不再阻塞。
- clear:将“Flag”设置为False
- set:将“Flag”设置为True
#!/usr/bin/env python # -*- coding:utf-8 -*- import threading def do(event): print 'start' event.wait() print 'execute' event_obj = threading.Event() for i in range(10): t = threading.Thread(target=do, args=(event_obj,)) t.start() event_obj.clear() inp = raw_input('input:') if inp == 'true': event_obj.set()
条件,使线程等待,只有条件满足才释放n个线程
import threading def run(n): con.acquire() con.wait() print("run the thread: %s" %n) con.release() if __name__ == '__main__': con = threading.Condition() for i in range(10): t = threading.Thread(target=run, args=(i,)) t.start() while True: inp = input('>>>') if inp == 'q': break con.acquire() con.notify(int(inp)) con.release()
Timer定时器,指定n秒之后执行操作
from threading import Timer def hello(): print("hello, world") t = Timer(1, hello) t.start() # after 1 seconds, "hello, world" will be printed
二、进程
进程的创建会耗费内存的空间,谨慎创建,多进程适用于计算密集型的情况适用
from threading import Timer def hello(): print("hello, world") t = Timer(1, hello) t.start() # after 1 seconds, "hello, world" will be printed
进程默认情况下的数据不是共享的(线程共享内存数据),所以开销比较大,默认无法共享数据
#!/usr/bin/env python #coding:utf-8 from multiprocessing import Process from multiprocessing import Manager import time li = [] def foo(i): li.append(i) print 'say hi',li for i in range(10): p = Process(target=foo,args=(i,)) p.start() print 'ending',li
#方法一,Array from multiprocessing import Process,Array temp = Array('i', [11,22,33,44]) def Foo(i): temp[i] = 100+i for item in temp: print i,'----->',item for i in range(2): p = Process(target=Foo,args=(i,)) p.start() #方法二:manage.dict()共享数据 from multiprocessing import Process,Manager manage = Manager() dic = manage.dict() def Foo(i): dic[i] = 100+i print dic.values() for i in range(2): p = Process(target=Foo,args=(i,)) p.start() p.join()
'c': ctypes.c_char, 'u': ctypes.c_wchar, 'b': ctypes.c_byte, 'B': ctypes.c_ubyte, 'h': ctypes.c_short, 'H': ctypes.c_ushort, 'i': ctypes.c_int, 'I': ctypes.c_uint, 'l': ctypes.c_long, 'L': ctypes.c_ulong, 'f': ctypes.c_float, 'd': ctypes.c_double
from multiprocessing import Process, queues import multiprocessing def f(i, q): print(i, q.get()) if __name__ == '__main__': q = queues.Queue(ctx=multiprocessing) q.put('h1') q.put('h2') q.put('h3') for i in range(3): p = Process(target=f, args=(i, q, )) p.start()
当创建进程时(非使用时),共享数据会被拿到子进程中,当进程中执行完毕后,再赋值给原值。因此进程也是有锁的
#!/usr/bin/env python # -*- coding:utf-8 -*- from multiprocessing import Process, Array, RLock def Foo(lock,temp,i): """ 将第0个数加100 """ lock.acquire() temp[0] = 100+i for item in temp: print i,'----->',item lock.release() lock = RLock() temp = Array('i', [11, 22, 33, 44]) for i in range(20): p = Process(target=Foo,args=(lock,temp,i,)) p.start()
进程池
进程池内部维护一个进程序列,当使用时,则去进程池中获取一个进程,如果进程池序列中没有可供使用的进进程,那么程序就会等待,直到进程池中有可用进程为止。
进程池中主要有两个方法:
- apply
- apply_async
#!/usr/bin/env python # -*- coding:utf-8 -*- from multiprocessing import Process,Pool import time def Foo(i): time.sleep(2) return i+100 def Bar(arg): print arg pool = Pool(5) #print pool.apply(Foo,(1,)) #print pool.apply_async(func =Foo, args=(1,)).get() for i in range(10): pool.apply_async(func=Foo, args=(i,),callback=Bar) print 'end' pool.close() pool.join()#进程池中进程执行完毕后再关闭,如果注释,那么程序直接关闭。
apply_async是非阻塞的,apply、是阻塞的,而且apply_async多一个参数,为回调函数
更多方法
•close() 关闭pool,使其不在接受新的任务。
•terminate() 结束工作进程,不在处理未完成的任务。
•join() 主进程阻塞,等待子进程的退出, join方法要在close或terminate之后使用。
三、协程
线程和进程的操作是由程序触发系统接口,最后的执行者是系统;协程的操作则是程序员。
协程存在的意义:对于多线程应用,CPU通过切片的方式来切换线程间的执行,线程切换时需要耗时(保存状态,下次继续)。协程,则只使用一个线程,在一个线程中规定某个代码块执行顺序。
协程的适用场景:当程序中存在大量不需要CPU的操作时(IO),适用于协程,简单的说就是将线程的执行的任务进行了优化,切片执行,比如一个线程在做一个网络请求的时候就会有延迟,这段时间线程是等待的,协成用这等待的时间去做别的
基本协程模块
#!/usr/bin/env python # -*- coding:utf-8 -*- from greenlet import greenlet def test1(): print 12 gr2.switch() print 34 gr2.switch() def test2(): print 56 gr1.switch() print 78 gr1 = greenlet(test1) gr2 = greenlet(test2) gr1.switch()
封装比较完善的协成模块
import gevent def foo(): print('Running in foo') gevent.sleep(0) print('Explicit context switch to foo again') def bar(): print('Explicit context to bar') gevent.sleep(0) print('Implicit context switch back to bar') gevent.joinall([ gevent.spawn(foo), gevent.spawn(bar), ])
遇到IO自动切换
from gevent import monkey; monkey.patch_all() import gevent import urllib2 def f(url): print('GET: %s' % url) resp = urllib2.urlopen(url) data = resp.read() print('%d bytes received from %s.' % (len(data), url)) gevent.joinall([ gevent.spawn(f, 'https://www.python.org/'), gevent.spawn(f, 'https://www.yahoo.com/'), gevent.spawn(f, 'https://github.com/'), ])