python任务执行之线程,进程,与协程

一、线程

  线程为程序中执行任务的最小单元,由Threading模块提供了相关操作,线程适合于IO操作密集的情况下使用

 1 #!/usr/bin/env python
 2 # -*- coding:utf-8 -*-
 3 import threading
 4 import time
 5   
 6 def show(arg):
 7     time.sleep(1)
 8     print 'thread'+str(arg)
 9   
10 for i in range(10):
11     t = threading.Thread(target=show, args=(i,))
12     t.start()
13   
14 print 'main thread stop'
线程基本使用

上述代码创建了10个“前台”线程,然后控制器就交给了CPU,CPU根据指定算法进行调度,分片执行指令。

更多操作如下

1 start            线程准备就绪,等待CPU调度
2 setName      为线程设置名称
3 getName      获取线程名称
4 setDaemon   设置为后台线程或前台线程(默认)
5                    如果是后台线程,主线程执行过程中,后台线程也在进行,主线程执行完毕后,后台线程不论成功与否,均停止
6                     如果是前台线程,主线程执行过程中,前台线程也在进行,主线程执行完毕后,等待前台线程也执行完成后,程序停止
7 join              逐个执行每个线程,执行完毕后继续往下执行,该方法使得多线程变得无意义
8 run              线程被cpu调度后自动执行线程对象的run方法
View Code
import threading
import time
 
 
class MyThread(threading.Thread):
    def __init__(self,num):
        threading.Thread.__init__(self)
        self.num = num
 
    def run(self):#定义每个线程要运行的函数
 
        print("running on number:%s" %self.num)
 
        time.sleep(3)
 
if __name__ == '__main__':
 
    t1 = MyThread(1)
    t2 = MyThread(2)
    t1.start()
    t2.start()
自定义线程类

 由于线程之间是进行随机调度,并且每个线程可能只执行n条执行之后,当多个线程同时修改同一条数据时可能会出现混乱数据,所以,出现了线程锁 - 同一时刻允许一个线程执行操作。使用代码方法如下

 1 #!/usr/bin/env python
 2 #coding:utf-8
 3    
 4 import threading
 5 import time
 6    
 7 gl_num = 0
 8    
 9 lock = threading.RLock()#定义锁
10    
11 def Func():
12     lock.acquire()#使用锁
13     global gl_num
14     gl_num +=1
15     time.sleep(1)
16     print gl_num
17     lock.release()#操作完毕,解锁
18        
19 for i in range(10):
20     t = threading.Thread(target=Func)
21     t.start()
View Code

 

互斥锁 同时只允许一个线程更改数据,而Semaphore是同时允许一定数量的线程更改数据 ,比如厕所有3个坑,那最多只允许3个人上厕所,后面的人只能等里面有人出来了才能再进去。

 1 import threading,time
 2  
 3 def run(n):
 4     semaphore.acquire()
 5     time.sleep(1)
 6     print("run the thread: %s" %n)
 7     semaphore.release()
 8  
 9 if __name__ == '__main__':
10  
11     num= 0
12     semaphore  = threading.BoundedSemaphore(5) #最多允许5个线程同时运行
13     for i in range(20):
14         t = threading.Thread(target=run,args=(i,))
15         t.start()
互拆锁

线程的事件(event)

python线程的事件用于主线程控制其他线程的执行,事件主要提供了三个方法 set、wait、clear。

事件处理的机制:全局定义了一个“Flag”,如果“Flag”值为 False,那么当程序执行 event.wait 方法时就会阻塞,如果“Flag”值为True,那么event.wait 方法时便不再阻塞。

  • clear:将“Flag”设置为False
  • set:将“Flag”设置为True
#!/usr/bin/env python
# -*- coding:utf-8 -*-
 
import threading
 
 
def do(event):
    print 'start'
    event.wait()
    print 'execute'
 
 
event_obj = threading.Event()
for i in range(10):
    t = threading.Thread(target=do, args=(event_obj,))
    t.start()
 
event_obj.clear()
inp = raw_input('input:')
if inp == 'true':
    event_obj.set()
event实例

条件,使线程等待,只有条件满足才释放n个线程

import threading
 
def run(n):
    con.acquire()
    con.wait()
    print("run the thread: %s" %n)
    con.release()
 
if __name__ == '__main__':
 
    con = threading.Condition()
    for i in range(10):
        t = threading.Thread(target=run, args=(i,))
        t.start()
 
    while True:
        inp = input('>>>')
        if inp == 'q':
            break
        con.acquire()
        con.notify(int(inp))
        con.release()
View Code

 

Timer定时器,指定n秒之后执行操作

from threading import Timer
 
 
def hello():
    print("hello, world")
 
t = Timer(1, hello)
t.start()  # after 1 seconds, "hello, world" will be printed
View Code

二、进程

  进程的创建会耗费内存的空间,谨慎创建,多进程适用于计算密集型的情况适用

from threading import Timer
 
 
def hello():
    print("hello, world")
 
t = Timer(1, hello)
t.start()  # after 1 seconds, "hello, world" will be printed
进程的基本使用

进程默认情况下的数据不是共享的(线程共享内存数据),所以开销比较大,默认无法共享数据

#!/usr/bin/env python
#coding:utf-8
 
from multiprocessing import Process
from multiprocessing import Manager
 
import time
 
li = []
 
def foo(i):
    li.append(i)
    print 'say hi',li
  
for i in range(10):
    p = Process(target=foo,args=(i,))
    p.start()
     
print 'ending',li
默认无法共享数据
#方法一,Array
from multiprocessing import Process,Array
temp = Array('i', [11,22,33,44])
 
def Foo(i):
    temp[i] = 100+i
    for item in temp:
        print i,'----->',item
 
for i in range(2):
    p = Process(target=Foo,args=(i,))
    p.start()
 
#方法二:manage.dict()共享数据
from multiprocessing import Process,Manager
 
manage = Manager()
dic = manage.dict()
 
def Foo(i):
    dic[i] = 100+i
    print dic.values()
 
for i in range(2):
    p = Process(target=Foo,args=(i,))
    p.start()
    p.join()
共享数据的方法
 'c': ctypes.c_char,  'u': ctypes.c_wchar,
    'b': ctypes.c_byte,  'B': ctypes.c_ubyte,
    'h': ctypes.c_short, 'H': ctypes.c_ushort,
    'i': ctypes.c_int,   'I': ctypes.c_uint,
    'l': ctypes.c_long,  'L': ctypes.c_ulong,
    'f': ctypes.c_float, 'd': ctypes.c_double
类型对应表
from multiprocessing import Process, queues
import multiprocessing

def f(i, q):
    print(i, q.get())

if __name__ == '__main__':
    q = queues.Queue(ctx=multiprocessing)

    q.put('h1')
    q.put('h2')
    q.put('h3')

    for i in range(3):
        p = Process(target=f, args=(i, q, ))
        p.start()
通过队列实现数据共享

 

当创建进程时(非使用时),共享数据会被拿到子进程中,当进程中执行完毕后,再赋值给原值。因此进程也是有锁的

#!/usr/bin/env python
# -*- coding:utf-8 -*-

from multiprocessing import Process, Array, RLock

def Foo(lock,temp,i):
    """
    将第0个数加100
    """
    lock.acquire()
    temp[0] = 100+i
    for item in temp:
        print i,'----->',item
    lock.release()

lock = RLock()
temp = Array('i', [11, 22, 33, 44])

for i in range(20):
    p = Process(target=Foo,args=(lock,temp,i,))
    p.start()
进程锁

进程池

进程池内部维护一个进程序列,当使用时,则去进程池中获取一个进程,如果进程池序列中没有可供使用的进进程,那么程序就会等待,直到进程池中有可用进程为止。

进程池中主要有两个方法:

  • apply
  • apply_async
#!/usr/bin/env python
# -*- coding:utf-8 -*-
from  multiprocessing import Process,Pool
import time
  
def Foo(i):
    time.sleep(2)
    return i+100
  
def Bar(arg):
    print arg
  
pool = Pool(5)
#print pool.apply(Foo,(1,))
#print pool.apply_async(func =Foo, args=(1,)).get()
  
for i in range(10):
    pool.apply_async(func=Foo, args=(i,),callback=Bar)
  
print 'end'
pool.close()
pool.join()#进程池中进程执行完毕后再关闭,如果注释,那么程序直接关闭。
View Code

apply_async是非阻塞的,apply、是阻塞的,而且apply_async多一个参数,为回调函数

更多方法

•close()    关闭pool,使其不在接受新的任务。
•terminate()    结束工作进程,不在处理未完成的任务。
•join()    主进程阻塞,等待子进程的退出, join方法要在close或terminate之后使用。
View Code

三、协程

线程和进程的操作是由程序触发系统接口,最后的执行者是系统;协程的操作则是程序员。

协程存在的意义:对于多线程应用,CPU通过切片的方式来切换线程间的执行,线程切换时需要耗时(保存状态,下次继续)。协程,则只使用一个线程,在一个线程中规定某个代码块执行顺序。

协程的适用场景:当程序中存在大量不需要CPU的操作时(IO),适用于协程,简单的说就是将线程的执行的任务进行了优化,切片执行,比如一个线程在做一个网络请求的时候就会有延迟,这段时间线程是等待的,协成用这等待的时间去做别的

基本协程模块

#!/usr/bin/env python
# -*- coding:utf-8 -*-
 
 
from greenlet import greenlet
 
 
def test1():
    print 12
    gr2.switch()
    print 34
    gr2.switch()
 
 
def test2():
    print 56
    gr1.switch()
    print 78
 
gr1 = greenlet(test1)
gr2 = greenlet(test2)
gr1.switch()
greenlet

封装比较完善的协成模块 

import gevent
 
def foo():
    print('Running in foo')
    gevent.sleep(0)
    print('Explicit context switch to foo again')
 
def bar():
    print('Explicit context to bar')
    gevent.sleep(0)
    print('Implicit context switch back to bar')
 
gevent.joinall([
    gevent.spawn(foo),
    gevent.spawn(bar),
])
gevett

遇到IO自动切换

from gevent import monkey; monkey.patch_all()
import gevent
import urllib2

def f(url):
    print('GET: %s' % url)
    resp = urllib2.urlopen(url)
    data = resp.read()
    print('%d bytes received from %s.' % (len(data), url))

gevent.joinall([
        gevent.spawn(f, 'https://www.python.org/'),
        gevent.spawn(f, 'https://www.yahoo.com/'),
        gevent.spawn(f, 'https://github.com/'),
])
View Code

 

 

 

 

posted @ 2016-08-09 11:44  菠萝丁  阅读(311)  评论(0编辑  收藏  举报